Properties

Label 2-552-1.1-c3-0-13
Degree $2$
Conductor $552$
Sign $1$
Analytic cond. $32.5690$
Root an. cond. $5.70693$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3·3-s + 12.9·5-s − 4.19·7-s + 9·9-s − 64.0·11-s + 82.4·13-s + 38.7·15-s + 71.6·17-s − 23.7·19-s − 12.5·21-s + 23·23-s + 42.1·25-s + 27·27-s + 264.·29-s + 239.·31-s − 192.·33-s − 54.1·35-s + 229.·37-s + 247.·39-s − 230.·41-s − 46.3·43-s + 116.·45-s − 119.·47-s − 325.·49-s + 214.·51-s + 122.·53-s − 827.·55-s + ⋯
L(s)  = 1  + 0.577·3-s + 1.15·5-s − 0.226·7-s + 0.333·9-s − 1.75·11-s + 1.75·13-s + 0.667·15-s + 1.02·17-s − 0.287·19-s − 0.130·21-s + 0.208·23-s + 0.336·25-s + 0.192·27-s + 1.69·29-s + 1.38·31-s − 1.01·33-s − 0.261·35-s + 1.01·37-s + 1.01·39-s − 0.878·41-s − 0.164·43-s + 0.385·45-s − 0.371·47-s − 0.948·49-s + 0.590·51-s + 0.316·53-s − 2.02·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 552 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 552 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(552\)    =    \(2^{3} \cdot 3 \cdot 23\)
Sign: $1$
Analytic conductor: \(32.5690\)
Root analytic conductor: \(5.70693\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 552,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(3.081232926\)
\(L(\frac12)\) \(\approx\) \(3.081232926\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 - 3T \)
23 \( 1 - 23T \)
good5 \( 1 - 12.9T + 125T^{2} \)
7 \( 1 + 4.19T + 343T^{2} \)
11 \( 1 + 64.0T + 1.33e3T^{2} \)
13 \( 1 - 82.4T + 2.19e3T^{2} \)
17 \( 1 - 71.6T + 4.91e3T^{2} \)
19 \( 1 + 23.7T + 6.85e3T^{2} \)
29 \( 1 - 264.T + 2.43e4T^{2} \)
31 \( 1 - 239.T + 2.97e4T^{2} \)
37 \( 1 - 229.T + 5.06e4T^{2} \)
41 \( 1 + 230.T + 6.89e4T^{2} \)
43 \( 1 + 46.3T + 7.95e4T^{2} \)
47 \( 1 + 119.T + 1.03e5T^{2} \)
53 \( 1 - 122.T + 1.48e5T^{2} \)
59 \( 1 - 647.T + 2.05e5T^{2} \)
61 \( 1 + 835.T + 2.26e5T^{2} \)
67 \( 1 + 24.3T + 3.00e5T^{2} \)
71 \( 1 - 411.T + 3.57e5T^{2} \)
73 \( 1 - 961.T + 3.89e5T^{2} \)
79 \( 1 - 1.01e3T + 4.93e5T^{2} \)
83 \( 1 + 1.18e3T + 5.71e5T^{2} \)
89 \( 1 - 246.T + 7.04e5T^{2} \)
97 \( 1 + 822.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.20907584596019042397725309878, −9.684918245682083683215856515496, −8.434983692544542826579239594833, −8.034326513951258224619696268800, −6.58052562962340734202120744015, −5.84084144201368171959989024948, −4.83857560148198442364944876953, −3.32372811440652477095727036217, −2.45061885470856272137945089875, −1.11552220010468724056344332851, 1.11552220010468724056344332851, 2.45061885470856272137945089875, 3.32372811440652477095727036217, 4.83857560148198442364944876953, 5.84084144201368171959989024948, 6.58052562962340734202120744015, 8.034326513951258224619696268800, 8.434983692544542826579239594833, 9.684918245682083683215856515496, 10.20907584596019042397725309878

Graph of the $Z$-function along the critical line