Properties

Label 552.4.a.k.1.5
Level $552$
Weight $4$
Character 552.1
Self dual yes
Analytic conductor $32.569$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [552,4,Mod(1,552)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(552, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("552.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 552 = 2^{3} \cdot 3 \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 552.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,18,0,-6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(32.5690543232\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{5} - 394x^{4} + 1617x^{3} + 37348x^{2} - 237382x + 130496 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{6} \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.5
Root \(9.55982\) of defining polynomial
Character \(\chi\) \(=\) 552.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+3.00000 q^{3} +12.9270 q^{5} -4.19260 q^{7} +9.00000 q^{9} -64.0171 q^{11} +82.4586 q^{13} +38.7811 q^{15} +71.6401 q^{17} -23.7886 q^{19} -12.5778 q^{21} +23.0000 q^{23} +42.1084 q^{25} +27.0000 q^{27} +264.917 q^{29} +239.892 q^{31} -192.051 q^{33} -54.1979 q^{35} +229.073 q^{37} +247.376 q^{39} -230.641 q^{41} -46.3845 q^{43} +116.343 q^{45} -119.812 q^{47} -325.422 q^{49} +214.920 q^{51} +122.208 q^{53} -827.551 q^{55} -71.3658 q^{57} +647.813 q^{59} -835.524 q^{61} -37.7334 q^{63} +1065.95 q^{65} -24.3400 q^{67} +69.0000 q^{69} +411.045 q^{71} +961.375 q^{73} +126.325 q^{75} +268.398 q^{77} +1013.43 q^{79} +81.0000 q^{81} -1180.90 q^{83} +926.094 q^{85} +794.750 q^{87} +246.712 q^{89} -345.716 q^{91} +719.675 q^{93} -307.516 q^{95} -822.248 q^{97} -576.154 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 18 q^{3} - 6 q^{5} + 2 q^{7} + 54 q^{9} + 20 q^{11} + 116 q^{13} - 18 q^{15} + 58 q^{17} + 122 q^{19} + 6 q^{21} + 138 q^{23} + 210 q^{25} + 162 q^{27} + 120 q^{29} + 492 q^{31} + 60 q^{33} + 580 q^{35}+ \cdots + 180 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 3.00000 0.577350
\(4\) 0 0
\(5\) 12.9270 1.15623 0.578115 0.815955i \(-0.303789\pi\)
0.578115 + 0.815955i \(0.303789\pi\)
\(6\) 0 0
\(7\) −4.19260 −0.226379 −0.113190 0.993573i \(-0.536107\pi\)
−0.113190 + 0.993573i \(0.536107\pi\)
\(8\) 0 0
\(9\) 9.00000 0.333333
\(10\) 0 0
\(11\) −64.0171 −1.75472 −0.877358 0.479837i \(-0.840696\pi\)
−0.877358 + 0.479837i \(0.840696\pi\)
\(12\) 0 0
\(13\) 82.4586 1.75922 0.879611 0.475693i \(-0.157803\pi\)
0.879611 + 0.475693i \(0.157803\pi\)
\(14\) 0 0
\(15\) 38.7811 0.667550
\(16\) 0 0
\(17\) 71.6401 1.02207 0.511037 0.859559i \(-0.329261\pi\)
0.511037 + 0.859559i \(0.329261\pi\)
\(18\) 0 0
\(19\) −23.7886 −0.287236 −0.143618 0.989633i \(-0.545874\pi\)
−0.143618 + 0.989633i \(0.545874\pi\)
\(20\) 0 0
\(21\) −12.5778 −0.130700
\(22\) 0 0
\(23\) 23.0000 0.208514
\(24\) 0 0
\(25\) 42.1084 0.336867
\(26\) 0 0
\(27\) 27.0000 0.192450
\(28\) 0 0
\(29\) 264.917 1.69634 0.848169 0.529725i \(-0.177705\pi\)
0.848169 + 0.529725i \(0.177705\pi\)
\(30\) 0 0
\(31\) 239.892 1.38987 0.694933 0.719075i \(-0.255434\pi\)
0.694933 + 0.719075i \(0.255434\pi\)
\(32\) 0 0
\(33\) −192.051 −1.01309
\(34\) 0 0
\(35\) −54.1979 −0.261746
\(36\) 0 0
\(37\) 229.073 1.01782 0.508910 0.860820i \(-0.330049\pi\)
0.508910 + 0.860820i \(0.330049\pi\)
\(38\) 0 0
\(39\) 247.376 1.01569
\(40\) 0 0
\(41\) −230.641 −0.878538 −0.439269 0.898356i \(-0.644762\pi\)
−0.439269 + 0.898356i \(0.644762\pi\)
\(42\) 0 0
\(43\) −46.3845 −0.164502 −0.0822508 0.996612i \(-0.526211\pi\)
−0.0822508 + 0.996612i \(0.526211\pi\)
\(44\) 0 0
\(45\) 116.343 0.385410
\(46\) 0 0
\(47\) −119.812 −0.371839 −0.185919 0.982565i \(-0.559526\pi\)
−0.185919 + 0.982565i \(0.559526\pi\)
\(48\) 0 0
\(49\) −325.422 −0.948753
\(50\) 0 0
\(51\) 214.920 0.590095
\(52\) 0 0
\(53\) 122.208 0.316726 0.158363 0.987381i \(-0.449378\pi\)
0.158363 + 0.987381i \(0.449378\pi\)
\(54\) 0 0
\(55\) −827.551 −2.02885
\(56\) 0 0
\(57\) −71.3658 −0.165836
\(58\) 0 0
\(59\) 647.813 1.42946 0.714730 0.699401i \(-0.246550\pi\)
0.714730 + 0.699401i \(0.246550\pi\)
\(60\) 0 0
\(61\) −835.524 −1.75374 −0.876868 0.480732i \(-0.840371\pi\)
−0.876868 + 0.480732i \(0.840371\pi\)
\(62\) 0 0
\(63\) −37.7334 −0.0754597
\(64\) 0 0
\(65\) 1065.95 2.03407
\(66\) 0 0
\(67\) −24.3400 −0.0443822 −0.0221911 0.999754i \(-0.507064\pi\)
−0.0221911 + 0.999754i \(0.507064\pi\)
\(68\) 0 0
\(69\) 69.0000 0.120386
\(70\) 0 0
\(71\) 411.045 0.687072 0.343536 0.939140i \(-0.388375\pi\)
0.343536 + 0.939140i \(0.388375\pi\)
\(72\) 0 0
\(73\) 961.375 1.54138 0.770688 0.637213i \(-0.219913\pi\)
0.770688 + 0.637213i \(0.219913\pi\)
\(74\) 0 0
\(75\) 126.325 0.194490
\(76\) 0 0
\(77\) 268.398 0.397231
\(78\) 0 0
\(79\) 1013.43 1.44328 0.721641 0.692267i \(-0.243388\pi\)
0.721641 + 0.692267i \(0.243388\pi\)
\(80\) 0 0
\(81\) 81.0000 0.111111
\(82\) 0 0
\(83\) −1180.90 −1.56170 −0.780848 0.624721i \(-0.785213\pi\)
−0.780848 + 0.624721i \(0.785213\pi\)
\(84\) 0 0
\(85\) 926.094 1.18175
\(86\) 0 0
\(87\) 794.750 0.979382
\(88\) 0 0
\(89\) 246.712 0.293837 0.146918 0.989149i \(-0.453065\pi\)
0.146918 + 0.989149i \(0.453065\pi\)
\(90\) 0 0
\(91\) −345.716 −0.398251
\(92\) 0 0
\(93\) 719.675 0.802439
\(94\) 0 0
\(95\) −307.516 −0.332110
\(96\) 0 0
\(97\) −822.248 −0.860687 −0.430343 0.902665i \(-0.641608\pi\)
−0.430343 + 0.902665i \(0.641608\pi\)
\(98\) 0 0
\(99\) −576.154 −0.584905
\(100\) 0 0
\(101\) 355.731 0.350461 0.175231 0.984527i \(-0.443933\pi\)
0.175231 + 0.984527i \(0.443933\pi\)
\(102\) 0 0
\(103\) 1148.01 1.09822 0.549112 0.835748i \(-0.314966\pi\)
0.549112 + 0.835748i \(0.314966\pi\)
\(104\) 0 0
\(105\) −162.594 −0.151119
\(106\) 0 0
\(107\) −1004.83 −0.907860 −0.453930 0.891037i \(-0.649978\pi\)
−0.453930 + 0.891037i \(0.649978\pi\)
\(108\) 0 0
\(109\) 8.60720 0.00756349 0.00378174 0.999993i \(-0.498796\pi\)
0.00378174 + 0.999993i \(0.498796\pi\)
\(110\) 0 0
\(111\) 687.219 0.587639
\(112\) 0 0
\(113\) −1175.23 −0.978374 −0.489187 0.872179i \(-0.662706\pi\)
−0.489187 + 0.872179i \(0.662706\pi\)
\(114\) 0 0
\(115\) 297.322 0.241091
\(116\) 0 0
\(117\) 742.127 0.586407
\(118\) 0 0
\(119\) −300.358 −0.231376
\(120\) 0 0
\(121\) 2767.19 2.07903
\(122\) 0 0
\(123\) −691.922 −0.507224
\(124\) 0 0
\(125\) −1071.54 −0.766734
\(126\) 0 0
\(127\) 1424.70 0.995448 0.497724 0.867335i \(-0.334169\pi\)
0.497724 + 0.867335i \(0.334169\pi\)
\(128\) 0 0
\(129\) −139.153 −0.0949750
\(130\) 0 0
\(131\) 655.270 0.437032 0.218516 0.975833i \(-0.429878\pi\)
0.218516 + 0.975833i \(0.429878\pi\)
\(132\) 0 0
\(133\) 99.7360 0.0650242
\(134\) 0 0
\(135\) 349.030 0.222517
\(136\) 0 0
\(137\) −481.031 −0.299980 −0.149990 0.988687i \(-0.547924\pi\)
−0.149990 + 0.988687i \(0.547924\pi\)
\(138\) 0 0
\(139\) 2459.48 1.50079 0.750396 0.660989i \(-0.229863\pi\)
0.750396 + 0.660989i \(0.229863\pi\)
\(140\) 0 0
\(141\) −359.437 −0.214681
\(142\) 0 0
\(143\) −5278.76 −3.08694
\(144\) 0 0
\(145\) 3424.59 1.96136
\(146\) 0 0
\(147\) −976.266 −0.547763
\(148\) 0 0
\(149\) 1012.74 0.556827 0.278414 0.960461i \(-0.410191\pi\)
0.278414 + 0.960461i \(0.410191\pi\)
\(150\) 0 0
\(151\) −1570.47 −0.846379 −0.423190 0.906041i \(-0.639090\pi\)
−0.423190 + 0.906041i \(0.639090\pi\)
\(152\) 0 0
\(153\) 644.761 0.340692
\(154\) 0 0
\(155\) 3101.09 1.60700
\(156\) 0 0
\(157\) −295.345 −0.150134 −0.0750671 0.997178i \(-0.523917\pi\)
−0.0750671 + 0.997178i \(0.523917\pi\)
\(158\) 0 0
\(159\) 366.623 0.182862
\(160\) 0 0
\(161\) −96.4298 −0.0472033
\(162\) 0 0
\(163\) −2915.11 −1.40079 −0.700395 0.713755i \(-0.746993\pi\)
−0.700395 + 0.713755i \(0.746993\pi\)
\(164\) 0 0
\(165\) −2482.65 −1.17136
\(166\) 0 0
\(167\) 1518.11 0.703444 0.351722 0.936105i \(-0.385596\pi\)
0.351722 + 0.936105i \(0.385596\pi\)
\(168\) 0 0
\(169\) 4602.41 2.09486
\(170\) 0 0
\(171\) −214.097 −0.0957452
\(172\) 0 0
\(173\) −3205.84 −1.40887 −0.704437 0.709766i \(-0.748800\pi\)
−0.704437 + 0.709766i \(0.748800\pi\)
\(174\) 0 0
\(175\) −176.544 −0.0762597
\(176\) 0 0
\(177\) 1943.44 0.825299
\(178\) 0 0
\(179\) −3875.31 −1.61818 −0.809090 0.587685i \(-0.800040\pi\)
−0.809090 + 0.587685i \(0.800040\pi\)
\(180\) 0 0
\(181\) 1295.72 0.532100 0.266050 0.963959i \(-0.414281\pi\)
0.266050 + 0.963959i \(0.414281\pi\)
\(182\) 0 0
\(183\) −2506.57 −1.01252
\(184\) 0 0
\(185\) 2961.23 1.17683
\(186\) 0 0
\(187\) −4586.19 −1.79345
\(188\) 0 0
\(189\) −113.200 −0.0435667
\(190\) 0 0
\(191\) −4515.49 −1.71063 −0.855313 0.518112i \(-0.826635\pi\)
−0.855313 + 0.518112i \(0.826635\pi\)
\(192\) 0 0
\(193\) −1746.88 −0.651521 −0.325760 0.945452i \(-0.605620\pi\)
−0.325760 + 0.945452i \(0.605620\pi\)
\(194\) 0 0
\(195\) 3197.84 1.17437
\(196\) 0 0
\(197\) −1425.11 −0.515407 −0.257703 0.966224i \(-0.582966\pi\)
−0.257703 + 0.966224i \(0.582966\pi\)
\(198\) 0 0
\(199\) −2743.12 −0.977158 −0.488579 0.872520i \(-0.662485\pi\)
−0.488579 + 0.872520i \(0.662485\pi\)
\(200\) 0 0
\(201\) −73.0201 −0.0256241
\(202\) 0 0
\(203\) −1110.69 −0.384016
\(204\) 0 0
\(205\) −2981.50 −1.01579
\(206\) 0 0
\(207\) 207.000 0.0695048
\(208\) 0 0
\(209\) 1522.88 0.504017
\(210\) 0 0
\(211\) −2902.19 −0.946895 −0.473447 0.880822i \(-0.656991\pi\)
−0.473447 + 0.880822i \(0.656991\pi\)
\(212\) 0 0
\(213\) 1233.14 0.396681
\(214\) 0 0
\(215\) −599.614 −0.190202
\(216\) 0 0
\(217\) −1005.77 −0.314637
\(218\) 0 0
\(219\) 2884.12 0.889913
\(220\) 0 0
\(221\) 5907.34 1.79806
\(222\) 0 0
\(223\) −17.3636 −0.00521414 −0.00260707 0.999997i \(-0.500830\pi\)
−0.00260707 + 0.999997i \(0.500830\pi\)
\(224\) 0 0
\(225\) 378.976 0.112289
\(226\) 0 0
\(227\) 1358.90 0.397328 0.198664 0.980068i \(-0.436340\pi\)
0.198664 + 0.980068i \(0.436340\pi\)
\(228\) 0 0
\(229\) 5976.65 1.72466 0.862332 0.506343i \(-0.169003\pi\)
0.862332 + 0.506343i \(0.169003\pi\)
\(230\) 0 0
\(231\) 805.194 0.229341
\(232\) 0 0
\(233\) −5556.79 −1.56239 −0.781196 0.624286i \(-0.785390\pi\)
−0.781196 + 0.624286i \(0.785390\pi\)
\(234\) 0 0
\(235\) −1548.82 −0.429931
\(236\) 0 0
\(237\) 3040.28 0.833280
\(238\) 0 0
\(239\) −3441.37 −0.931395 −0.465698 0.884944i \(-0.654197\pi\)
−0.465698 + 0.884944i \(0.654197\pi\)
\(240\) 0 0
\(241\) 2410.17 0.644202 0.322101 0.946705i \(-0.395611\pi\)
0.322101 + 0.946705i \(0.395611\pi\)
\(242\) 0 0
\(243\) 243.000 0.0641500
\(244\) 0 0
\(245\) −4206.75 −1.09698
\(246\) 0 0
\(247\) −1961.57 −0.505312
\(248\) 0 0
\(249\) −3542.70 −0.901646
\(250\) 0 0
\(251\) 1450.26 0.364699 0.182350 0.983234i \(-0.441630\pi\)
0.182350 + 0.983234i \(0.441630\pi\)
\(252\) 0 0
\(253\) −1472.39 −0.365884
\(254\) 0 0
\(255\) 2778.28 0.682285
\(256\) 0 0
\(257\) 4278.10 1.03837 0.519184 0.854663i \(-0.326236\pi\)
0.519184 + 0.854663i \(0.326236\pi\)
\(258\) 0 0
\(259\) −960.411 −0.230413
\(260\) 0 0
\(261\) 2384.25 0.565446
\(262\) 0 0
\(263\) −5204.33 −1.22020 −0.610101 0.792324i \(-0.708871\pi\)
−0.610101 + 0.792324i \(0.708871\pi\)
\(264\) 0 0
\(265\) 1579.78 0.366208
\(266\) 0 0
\(267\) 740.137 0.169647
\(268\) 0 0
\(269\) −8287.54 −1.87844 −0.939220 0.343316i \(-0.888450\pi\)
−0.939220 + 0.343316i \(0.888450\pi\)
\(270\) 0 0
\(271\) 261.850 0.0586947 0.0293473 0.999569i \(-0.490657\pi\)
0.0293473 + 0.999569i \(0.490657\pi\)
\(272\) 0 0
\(273\) −1037.15 −0.229930
\(274\) 0 0
\(275\) −2695.66 −0.591106
\(276\) 0 0
\(277\) −4663.05 −1.01146 −0.505732 0.862691i \(-0.668777\pi\)
−0.505732 + 0.862691i \(0.668777\pi\)
\(278\) 0 0
\(279\) 2159.03 0.463289
\(280\) 0 0
\(281\) −6903.29 −1.46554 −0.732768 0.680479i \(-0.761772\pi\)
−0.732768 + 0.680479i \(0.761772\pi\)
\(282\) 0 0
\(283\) 5843.36 1.22739 0.613695 0.789543i \(-0.289682\pi\)
0.613695 + 0.789543i \(0.289682\pi\)
\(284\) 0 0
\(285\) −922.549 −0.191744
\(286\) 0 0
\(287\) 966.984 0.198883
\(288\) 0 0
\(289\) 219.298 0.0446363
\(290\) 0 0
\(291\) −2466.74 −0.496918
\(292\) 0 0
\(293\) −7169.89 −1.42959 −0.714794 0.699335i \(-0.753479\pi\)
−0.714794 + 0.699335i \(0.753479\pi\)
\(294\) 0 0
\(295\) 8374.31 1.65278
\(296\) 0 0
\(297\) −1728.46 −0.337695
\(298\) 0 0
\(299\) 1896.55 0.366823
\(300\) 0 0
\(301\) 194.472 0.0372397
\(302\) 0 0
\(303\) 1067.19 0.202339
\(304\) 0 0
\(305\) −10800.9 −2.02772
\(306\) 0 0
\(307\) −6115.90 −1.13698 −0.568490 0.822690i \(-0.692472\pi\)
−0.568490 + 0.822690i \(0.692472\pi\)
\(308\) 0 0
\(309\) 3444.04 0.634060
\(310\) 0 0
\(311\) 1186.53 0.216341 0.108170 0.994132i \(-0.465501\pi\)
0.108170 + 0.994132i \(0.465501\pi\)
\(312\) 0 0
\(313\) −6725.70 −1.21457 −0.607283 0.794485i \(-0.707741\pi\)
−0.607283 + 0.794485i \(0.707741\pi\)
\(314\) 0 0
\(315\) −487.781 −0.0872487
\(316\) 0 0
\(317\) −4545.00 −0.805277 −0.402638 0.915359i \(-0.631907\pi\)
−0.402638 + 0.915359i \(0.631907\pi\)
\(318\) 0 0
\(319\) −16959.2 −2.97659
\(320\) 0 0
\(321\) −3014.50 −0.524153
\(322\) 0 0
\(323\) −1704.22 −0.293576
\(324\) 0 0
\(325\) 3472.20 0.592624
\(326\) 0 0
\(327\) 25.8216 0.00436678
\(328\) 0 0
\(329\) 502.325 0.0841766
\(330\) 0 0
\(331\) −2039.67 −0.338702 −0.169351 0.985556i \(-0.554167\pi\)
−0.169351 + 0.985556i \(0.554167\pi\)
\(332\) 0 0
\(333\) 2061.66 0.339273
\(334\) 0 0
\(335\) −314.645 −0.0513160
\(336\) 0 0
\(337\) 1940.10 0.313603 0.156802 0.987630i \(-0.449882\pi\)
0.156802 + 0.987630i \(0.449882\pi\)
\(338\) 0 0
\(339\) −3525.69 −0.564864
\(340\) 0 0
\(341\) −15357.2 −2.43882
\(342\) 0 0
\(343\) 2802.43 0.441157
\(344\) 0 0
\(345\) 891.966 0.139194
\(346\) 0 0
\(347\) 6391.31 0.988772 0.494386 0.869243i \(-0.335393\pi\)
0.494386 + 0.869243i \(0.335393\pi\)
\(348\) 0 0
\(349\) 9878.96 1.51521 0.757605 0.652713i \(-0.226369\pi\)
0.757605 + 0.652713i \(0.226369\pi\)
\(350\) 0 0
\(351\) 2226.38 0.338562
\(352\) 0 0
\(353\) 8331.06 1.25614 0.628070 0.778157i \(-0.283845\pi\)
0.628070 + 0.778157i \(0.283845\pi\)
\(354\) 0 0
\(355\) 5313.60 0.794413
\(356\) 0 0
\(357\) −901.074 −0.133585
\(358\) 0 0
\(359\) 11191.5 1.64531 0.822654 0.568543i \(-0.192493\pi\)
0.822654 + 0.568543i \(0.192493\pi\)
\(360\) 0 0
\(361\) −6293.10 −0.917496
\(362\) 0 0
\(363\) 8301.56 1.20033
\(364\) 0 0
\(365\) 12427.7 1.78218
\(366\) 0 0
\(367\) −3201.82 −0.455405 −0.227703 0.973731i \(-0.573121\pi\)
−0.227703 + 0.973731i \(0.573121\pi\)
\(368\) 0 0
\(369\) −2075.77 −0.292846
\(370\) 0 0
\(371\) −512.367 −0.0717002
\(372\) 0 0
\(373\) 6828.79 0.947939 0.473970 0.880541i \(-0.342821\pi\)
0.473970 + 0.880541i \(0.342821\pi\)
\(374\) 0 0
\(375\) −3214.63 −0.442674
\(376\) 0 0
\(377\) 21844.7 2.98424
\(378\) 0 0
\(379\) 3177.07 0.430594 0.215297 0.976549i \(-0.430928\pi\)
0.215297 + 0.976549i \(0.430928\pi\)
\(380\) 0 0
\(381\) 4274.11 0.574722
\(382\) 0 0
\(383\) 1184.55 0.158035 0.0790176 0.996873i \(-0.474822\pi\)
0.0790176 + 0.996873i \(0.474822\pi\)
\(384\) 0 0
\(385\) 3469.59 0.459290
\(386\) 0 0
\(387\) −417.460 −0.0548339
\(388\) 0 0
\(389\) −8707.33 −1.13491 −0.567454 0.823405i \(-0.692072\pi\)
−0.567454 + 0.823405i \(0.692072\pi\)
\(390\) 0 0
\(391\) 1647.72 0.213117
\(392\) 0 0
\(393\) 1965.81 0.252321
\(394\) 0 0
\(395\) 13100.6 1.66877
\(396\) 0 0
\(397\) 9174.40 1.15982 0.579912 0.814679i \(-0.303087\pi\)
0.579912 + 0.814679i \(0.303087\pi\)
\(398\) 0 0
\(399\) 299.208 0.0375417
\(400\) 0 0
\(401\) −12258.1 −1.52653 −0.763267 0.646083i \(-0.776406\pi\)
−0.763267 + 0.646083i \(0.776406\pi\)
\(402\) 0 0
\(403\) 19781.1 2.44508
\(404\) 0 0
\(405\) 1047.09 0.128470
\(406\) 0 0
\(407\) −14664.6 −1.78599
\(408\) 0 0
\(409\) −13802.4 −1.66866 −0.834332 0.551262i \(-0.814146\pi\)
−0.834332 + 0.551262i \(0.814146\pi\)
\(410\) 0 0
\(411\) −1443.09 −0.173194
\(412\) 0 0
\(413\) −2716.02 −0.323600
\(414\) 0 0
\(415\) −15265.6 −1.80568
\(416\) 0 0
\(417\) 7378.43 0.866482
\(418\) 0 0
\(419\) 10173.9 1.18622 0.593110 0.805121i \(-0.297900\pi\)
0.593110 + 0.805121i \(0.297900\pi\)
\(420\) 0 0
\(421\) 9880.41 1.14381 0.571903 0.820322i \(-0.306206\pi\)
0.571903 + 0.820322i \(0.306206\pi\)
\(422\) 0 0
\(423\) −1078.31 −0.123946
\(424\) 0 0
\(425\) 3016.65 0.344303
\(426\) 0 0
\(427\) 3503.02 0.397009
\(428\) 0 0
\(429\) −15836.3 −1.78224
\(430\) 0 0
\(431\) 3803.87 0.425119 0.212559 0.977148i \(-0.431820\pi\)
0.212559 + 0.977148i \(0.431820\pi\)
\(432\) 0 0
\(433\) −9433.35 −1.04697 −0.523485 0.852035i \(-0.675368\pi\)
−0.523485 + 0.852035i \(0.675368\pi\)
\(434\) 0 0
\(435\) 10273.8 1.13239
\(436\) 0 0
\(437\) −547.138 −0.0598928
\(438\) 0 0
\(439\) 729.216 0.0792793 0.0396396 0.999214i \(-0.487379\pi\)
0.0396396 + 0.999214i \(0.487379\pi\)
\(440\) 0 0
\(441\) −2928.80 −0.316251
\(442\) 0 0
\(443\) 5268.44 0.565036 0.282518 0.959262i \(-0.408830\pi\)
0.282518 + 0.959262i \(0.408830\pi\)
\(444\) 0 0
\(445\) 3189.26 0.339743
\(446\) 0 0
\(447\) 3038.23 0.321484
\(448\) 0 0
\(449\) 4134.67 0.434582 0.217291 0.976107i \(-0.430278\pi\)
0.217291 + 0.976107i \(0.430278\pi\)
\(450\) 0 0
\(451\) 14764.9 1.54158
\(452\) 0 0
\(453\) −4711.42 −0.488657
\(454\) 0 0
\(455\) −4469.08 −0.460470
\(456\) 0 0
\(457\) −3919.06 −0.401151 −0.200575 0.979678i \(-0.564281\pi\)
−0.200575 + 0.979678i \(0.564281\pi\)
\(458\) 0 0
\(459\) 1934.28 0.196698
\(460\) 0 0
\(461\) −8254.74 −0.833973 −0.416987 0.908913i \(-0.636914\pi\)
−0.416987 + 0.908913i \(0.636914\pi\)
\(462\) 0 0
\(463\) 1329.71 0.133471 0.0667353 0.997771i \(-0.478742\pi\)
0.0667353 + 0.997771i \(0.478742\pi\)
\(464\) 0 0
\(465\) 9303.27 0.927804
\(466\) 0 0
\(467\) 2900.60 0.287417 0.143709 0.989620i \(-0.454097\pi\)
0.143709 + 0.989620i \(0.454097\pi\)
\(468\) 0 0
\(469\) 102.048 0.0100472
\(470\) 0 0
\(471\) −886.034 −0.0866800
\(472\) 0 0
\(473\) 2969.40 0.288654
\(474\) 0 0
\(475\) −1001.70 −0.0967603
\(476\) 0 0
\(477\) 1099.87 0.105575
\(478\) 0 0
\(479\) −13010.2 −1.24102 −0.620512 0.784197i \(-0.713075\pi\)
−0.620512 + 0.784197i \(0.713075\pi\)
\(480\) 0 0
\(481\) 18889.0 1.79057
\(482\) 0 0
\(483\) −289.289 −0.0272528
\(484\) 0 0
\(485\) −10629.2 −0.995152
\(486\) 0 0
\(487\) −9048.93 −0.841984 −0.420992 0.907064i \(-0.638318\pi\)
−0.420992 + 0.907064i \(0.638318\pi\)
\(488\) 0 0
\(489\) −8745.33 −0.808747
\(490\) 0 0
\(491\) −9859.56 −0.906223 −0.453112 0.891454i \(-0.649686\pi\)
−0.453112 + 0.891454i \(0.649686\pi\)
\(492\) 0 0
\(493\) 18978.7 1.73378
\(494\) 0 0
\(495\) −7447.96 −0.676285
\(496\) 0 0
\(497\) −1723.35 −0.155539
\(498\) 0 0
\(499\) −8920.80 −0.800301 −0.400150 0.916450i \(-0.631042\pi\)
−0.400150 + 0.916450i \(0.631042\pi\)
\(500\) 0 0
\(501\) 4554.34 0.406133
\(502\) 0 0
\(503\) 18943.0 1.67917 0.839587 0.543225i \(-0.182797\pi\)
0.839587 + 0.543225i \(0.182797\pi\)
\(504\) 0 0
\(505\) 4598.55 0.405214
\(506\) 0 0
\(507\) 13807.2 1.20947
\(508\) 0 0
\(509\) 4830.63 0.420656 0.210328 0.977631i \(-0.432547\pi\)
0.210328 + 0.977631i \(0.432547\pi\)
\(510\) 0 0
\(511\) −4030.66 −0.348935
\(512\) 0 0
\(513\) −642.292 −0.0552785
\(514\) 0 0
\(515\) 14840.4 1.26980
\(516\) 0 0
\(517\) 7670.04 0.652472
\(518\) 0 0
\(519\) −9617.51 −0.813414
\(520\) 0 0
\(521\) 12036.9 1.01218 0.506091 0.862480i \(-0.331090\pi\)
0.506091 + 0.862480i \(0.331090\pi\)
\(522\) 0 0
\(523\) 6133.13 0.512778 0.256389 0.966574i \(-0.417467\pi\)
0.256389 + 0.966574i \(0.417467\pi\)
\(524\) 0 0
\(525\) −529.631 −0.0440285
\(526\) 0 0
\(527\) 17185.9 1.42055
\(528\) 0 0
\(529\) 529.000 0.0434783
\(530\) 0 0
\(531\) 5830.32 0.476486
\(532\) 0 0
\(533\) −19018.3 −1.54554
\(534\) 0 0
\(535\) −12989.5 −1.04969
\(536\) 0 0
\(537\) −11625.9 −0.934257
\(538\) 0 0
\(539\) 20832.6 1.66479
\(540\) 0 0
\(541\) 22882.9 1.81851 0.909253 0.416243i \(-0.136653\pi\)
0.909253 + 0.416243i \(0.136653\pi\)
\(542\) 0 0
\(543\) 3887.16 0.307208
\(544\) 0 0
\(545\) 111.266 0.00874513
\(546\) 0 0
\(547\) 4377.18 0.342148 0.171074 0.985258i \(-0.445276\pi\)
0.171074 + 0.985258i \(0.445276\pi\)
\(548\) 0 0
\(549\) −7519.72 −0.584579
\(550\) 0 0
\(551\) −6302.00 −0.487249
\(552\) 0 0
\(553\) −4248.89 −0.326729
\(554\) 0 0
\(555\) 8883.70 0.679445
\(556\) 0 0
\(557\) −9386.41 −0.714030 −0.357015 0.934099i \(-0.616206\pi\)
−0.357015 + 0.934099i \(0.616206\pi\)
\(558\) 0 0
\(559\) −3824.80 −0.289395
\(560\) 0 0
\(561\) −13758.6 −1.03545
\(562\) 0 0
\(563\) −16508.3 −1.23578 −0.617889 0.786265i \(-0.712012\pi\)
−0.617889 + 0.786265i \(0.712012\pi\)
\(564\) 0 0
\(565\) −15192.2 −1.13122
\(566\) 0 0
\(567\) −339.600 −0.0251532
\(568\) 0 0
\(569\) −16177.9 −1.19194 −0.595968 0.803008i \(-0.703232\pi\)
−0.595968 + 0.803008i \(0.703232\pi\)
\(570\) 0 0
\(571\) −10865.0 −0.796299 −0.398150 0.917321i \(-0.630347\pi\)
−0.398150 + 0.917321i \(0.630347\pi\)
\(572\) 0 0
\(573\) −13546.5 −0.987630
\(574\) 0 0
\(575\) 968.493 0.0702417
\(576\) 0 0
\(577\) 8829.62 0.637057 0.318529 0.947913i \(-0.396811\pi\)
0.318529 + 0.947913i \(0.396811\pi\)
\(578\) 0 0
\(579\) −5240.65 −0.376156
\(580\) 0 0
\(581\) 4951.05 0.353535
\(582\) 0 0
\(583\) −7823.37 −0.555765
\(584\) 0 0
\(585\) 9593.51 0.678022
\(586\) 0 0
\(587\) −2733.60 −0.192211 −0.0961054 0.995371i \(-0.530639\pi\)
−0.0961054 + 0.995371i \(0.530639\pi\)
\(588\) 0 0
\(589\) −5706.69 −0.399219
\(590\) 0 0
\(591\) −4275.34 −0.297570
\(592\) 0 0
\(593\) 18752.6 1.29861 0.649307 0.760527i \(-0.275059\pi\)
0.649307 + 0.760527i \(0.275059\pi\)
\(594\) 0 0
\(595\) −3882.74 −0.267524
\(596\) 0 0
\(597\) −8229.35 −0.564163
\(598\) 0 0
\(599\) −4868.99 −0.332123 −0.166061 0.986115i \(-0.553105\pi\)
−0.166061 + 0.986115i \(0.553105\pi\)
\(600\) 0 0
\(601\) 12147.7 0.824482 0.412241 0.911075i \(-0.364746\pi\)
0.412241 + 0.911075i \(0.364746\pi\)
\(602\) 0 0
\(603\) −219.060 −0.0147941
\(604\) 0 0
\(605\) 35771.5 2.40383
\(606\) 0 0
\(607\) −10976.8 −0.733993 −0.366997 0.930222i \(-0.619614\pi\)
−0.366997 + 0.930222i \(0.619614\pi\)
\(608\) 0 0
\(609\) −3332.07 −0.221711
\(610\) 0 0
\(611\) −9879.56 −0.654147
\(612\) 0 0
\(613\) −13319.6 −0.877605 −0.438802 0.898584i \(-0.644597\pi\)
−0.438802 + 0.898584i \(0.644597\pi\)
\(614\) 0 0
\(615\) −8944.51 −0.586467
\(616\) 0 0
\(617\) −6758.54 −0.440986 −0.220493 0.975389i \(-0.570767\pi\)
−0.220493 + 0.975389i \(0.570767\pi\)
\(618\) 0 0
\(619\) 8311.83 0.539710 0.269855 0.962901i \(-0.413024\pi\)
0.269855 + 0.962901i \(0.413024\pi\)
\(620\) 0 0
\(621\) 621.000 0.0401286
\(622\) 0 0
\(623\) −1034.37 −0.0665184
\(624\) 0 0
\(625\) −19115.4 −1.22339
\(626\) 0 0
\(627\) 4568.63 0.290994
\(628\) 0 0
\(629\) 16410.8 1.04029
\(630\) 0 0
\(631\) 22464.1 1.41724 0.708622 0.705588i \(-0.249317\pi\)
0.708622 + 0.705588i \(0.249317\pi\)
\(632\) 0 0
\(633\) −8706.56 −0.546690
\(634\) 0 0
\(635\) 18417.2 1.15097
\(636\) 0 0
\(637\) −26833.8 −1.66907
\(638\) 0 0
\(639\) 3699.41 0.229024
\(640\) 0 0
\(641\) 9424.40 0.580720 0.290360 0.956917i \(-0.406225\pi\)
0.290360 + 0.956917i \(0.406225\pi\)
\(642\) 0 0
\(643\) 25518.4 1.56508 0.782541 0.622599i \(-0.213923\pi\)
0.782541 + 0.622599i \(0.213923\pi\)
\(644\) 0 0
\(645\) −1798.84 −0.109813
\(646\) 0 0
\(647\) −24543.2 −1.49133 −0.745667 0.666318i \(-0.767869\pi\)
−0.745667 + 0.666318i \(0.767869\pi\)
\(648\) 0 0
\(649\) −41471.1 −2.50830
\(650\) 0 0
\(651\) −3017.31 −0.181655
\(652\) 0 0
\(653\) 10669.6 0.639407 0.319704 0.947518i \(-0.396417\pi\)
0.319704 + 0.947518i \(0.396417\pi\)
\(654\) 0 0
\(655\) 8470.70 0.505309
\(656\) 0 0
\(657\) 8652.37 0.513792
\(658\) 0 0
\(659\) 8547.77 0.505272 0.252636 0.967561i \(-0.418703\pi\)
0.252636 + 0.967561i \(0.418703\pi\)
\(660\) 0 0
\(661\) −4136.55 −0.243409 −0.121704 0.992566i \(-0.538836\pi\)
−0.121704 + 0.992566i \(0.538836\pi\)
\(662\) 0 0
\(663\) 17722.0 1.03811
\(664\) 0 0
\(665\) 1289.29 0.0751829
\(666\) 0 0
\(667\) 6093.09 0.353711
\(668\) 0 0
\(669\) −52.0908 −0.00301038
\(670\) 0 0
\(671\) 53487.8 3.07731
\(672\) 0 0
\(673\) 11868.3 0.679775 0.339887 0.940466i \(-0.389611\pi\)
0.339887 + 0.940466i \(0.389611\pi\)
\(674\) 0 0
\(675\) 1136.93 0.0648301
\(676\) 0 0
\(677\) −15683.8 −0.890367 −0.445183 0.895439i \(-0.646861\pi\)
−0.445183 + 0.895439i \(0.646861\pi\)
\(678\) 0 0
\(679\) 3447.36 0.194841
\(680\) 0 0
\(681\) 4076.70 0.229397
\(682\) 0 0
\(683\) 11729.8 0.657141 0.328570 0.944479i \(-0.393433\pi\)
0.328570 + 0.944479i \(0.393433\pi\)
\(684\) 0 0
\(685\) −6218.31 −0.346846
\(686\) 0 0
\(687\) 17930.0 0.995736
\(688\) 0 0
\(689\) 10077.1 0.557192
\(690\) 0 0
\(691\) 15929.9 0.876991 0.438496 0.898733i \(-0.355511\pi\)
0.438496 + 0.898733i \(0.355511\pi\)
\(692\) 0 0
\(693\) 2415.58 0.132410
\(694\) 0 0
\(695\) 31793.7 1.73526
\(696\) 0 0
\(697\) −16523.1 −0.897931
\(698\) 0 0
\(699\) −16670.4 −0.902047
\(700\) 0 0
\(701\) 3804.66 0.204993 0.102496 0.994733i \(-0.467317\pi\)
0.102496 + 0.994733i \(0.467317\pi\)
\(702\) 0 0
\(703\) −5449.32 −0.292354
\(704\) 0 0
\(705\) −4646.46 −0.248221
\(706\) 0 0
\(707\) −1491.44 −0.0793371
\(708\) 0 0
\(709\) 16162.5 0.856130 0.428065 0.903748i \(-0.359195\pi\)
0.428065 + 0.903748i \(0.359195\pi\)
\(710\) 0 0
\(711\) 9120.83 0.481094
\(712\) 0 0
\(713\) 5517.51 0.289807
\(714\) 0 0
\(715\) −68238.7 −3.56921
\(716\) 0 0
\(717\) −10324.1 −0.537741
\(718\) 0 0
\(719\) −37375.9 −1.93864 −0.969321 0.245797i \(-0.920950\pi\)
−0.969321 + 0.245797i \(0.920950\pi\)
\(720\) 0 0
\(721\) −4813.16 −0.248615
\(722\) 0 0
\(723\) 7230.51 0.371930
\(724\) 0 0
\(725\) 11155.2 0.571441
\(726\) 0 0
\(727\) −22250.1 −1.13509 −0.567546 0.823342i \(-0.692107\pi\)
−0.567546 + 0.823342i \(0.692107\pi\)
\(728\) 0 0
\(729\) 729.000 0.0370370
\(730\) 0 0
\(731\) −3322.99 −0.168133
\(732\) 0 0
\(733\) −4449.29 −0.224200 −0.112100 0.993697i \(-0.535758\pi\)
−0.112100 + 0.993697i \(0.535758\pi\)
\(734\) 0 0
\(735\) −12620.2 −0.633339
\(736\) 0 0
\(737\) 1558.18 0.0778782
\(738\) 0 0
\(739\) 5449.60 0.271268 0.135634 0.990759i \(-0.456693\pi\)
0.135634 + 0.990759i \(0.456693\pi\)
\(740\) 0 0
\(741\) −5884.72 −0.291742
\(742\) 0 0
\(743\) −30768.5 −1.51923 −0.759615 0.650373i \(-0.774613\pi\)
−0.759615 + 0.650373i \(0.774613\pi\)
\(744\) 0 0
\(745\) 13091.8 0.643820
\(746\) 0 0
\(747\) −10628.1 −0.520565
\(748\) 0 0
\(749\) 4212.87 0.205520
\(750\) 0 0
\(751\) −36087.1 −1.75345 −0.876723 0.480995i \(-0.840275\pi\)
−0.876723 + 0.480995i \(0.840275\pi\)
\(752\) 0 0
\(753\) 4350.78 0.210559
\(754\) 0 0
\(755\) −20301.6 −0.978609
\(756\) 0 0
\(757\) 9434.21 0.452962 0.226481 0.974016i \(-0.427278\pi\)
0.226481 + 0.974016i \(0.427278\pi\)
\(758\) 0 0
\(759\) −4417.18 −0.211243
\(760\) 0 0
\(761\) −11744.3 −0.559433 −0.279717 0.960083i \(-0.590241\pi\)
−0.279717 + 0.960083i \(0.590241\pi\)
\(762\) 0 0
\(763\) −36.0865 −0.00171222
\(764\) 0 0
\(765\) 8334.85 0.393918
\(766\) 0 0
\(767\) 53417.8 2.51474
\(768\) 0 0
\(769\) 18646.4 0.874389 0.437194 0.899367i \(-0.355972\pi\)
0.437194 + 0.899367i \(0.355972\pi\)
\(770\) 0 0
\(771\) 12834.3 0.599502
\(772\) 0 0
\(773\) 846.985 0.0394100 0.0197050 0.999806i \(-0.493727\pi\)
0.0197050 + 0.999806i \(0.493727\pi\)
\(774\) 0 0
\(775\) 10101.5 0.468200
\(776\) 0 0
\(777\) −2881.23 −0.133029
\(778\) 0 0
\(779\) 5486.62 0.252347
\(780\) 0 0
\(781\) −26313.9 −1.20562
\(782\) 0 0
\(783\) 7152.75 0.326461
\(784\) 0 0
\(785\) −3817.93 −0.173590
\(786\) 0 0
\(787\) −18877.1 −0.855015 −0.427507 0.904012i \(-0.640608\pi\)
−0.427507 + 0.904012i \(0.640608\pi\)
\(788\) 0 0
\(789\) −15613.0 −0.704484
\(790\) 0 0
\(791\) 4927.26 0.221483
\(792\) 0 0
\(793\) −68896.1 −3.08521
\(794\) 0 0
\(795\) 4739.34 0.211430
\(796\) 0 0
\(797\) −13161.7 −0.584959 −0.292480 0.956272i \(-0.594480\pi\)
−0.292480 + 0.956272i \(0.594480\pi\)
\(798\) 0 0
\(799\) −8583.37 −0.380047
\(800\) 0 0
\(801\) 2220.41 0.0979455
\(802\) 0 0
\(803\) −61544.4 −2.70468
\(804\) 0 0
\(805\) −1246.55 −0.0545779
\(806\) 0 0
\(807\) −24862.6 −1.08452
\(808\) 0 0
\(809\) −38301.7 −1.66454 −0.832271 0.554369i \(-0.812960\pi\)
−0.832271 + 0.554369i \(0.812960\pi\)
\(810\) 0 0
\(811\) −32892.0 −1.42416 −0.712081 0.702097i \(-0.752247\pi\)
−0.712081 + 0.702097i \(0.752247\pi\)
\(812\) 0 0
\(813\) 785.550 0.0338874
\(814\) 0 0
\(815\) −37683.7 −1.61964
\(816\) 0 0
\(817\) 1103.42 0.0472507
\(818\) 0 0
\(819\) −3111.44 −0.132750
\(820\) 0 0
\(821\) 45489.5 1.93373 0.966867 0.255280i \(-0.0821676\pi\)
0.966867 + 0.255280i \(0.0821676\pi\)
\(822\) 0 0
\(823\) 12461.5 0.527800 0.263900 0.964550i \(-0.414991\pi\)
0.263900 + 0.964550i \(0.414991\pi\)
\(824\) 0 0
\(825\) −8086.97 −0.341275
\(826\) 0 0
\(827\) 19488.9 0.819462 0.409731 0.912206i \(-0.365623\pi\)
0.409731 + 0.912206i \(0.365623\pi\)
\(828\) 0 0
\(829\) 29887.3 1.25215 0.626073 0.779764i \(-0.284661\pi\)
0.626073 + 0.779764i \(0.284661\pi\)
\(830\) 0 0
\(831\) −13989.1 −0.583969
\(832\) 0 0
\(833\) −23313.3 −0.969696
\(834\) 0 0
\(835\) 19624.7 0.813343
\(836\) 0 0
\(837\) 6477.08 0.267480
\(838\) 0 0
\(839\) −2261.66 −0.0930646 −0.0465323 0.998917i \(-0.514817\pi\)
−0.0465323 + 0.998917i \(0.514817\pi\)
\(840\) 0 0
\(841\) 45791.9 1.87756
\(842\) 0 0
\(843\) −20709.9 −0.846127
\(844\) 0 0
\(845\) 59495.6 2.42214
\(846\) 0 0
\(847\) −11601.7 −0.470648
\(848\) 0 0
\(849\) 17530.1 0.708634
\(850\) 0 0
\(851\) 5268.68 0.212230
\(852\) 0 0
\(853\) 10189.5 0.409007 0.204504 0.978866i \(-0.434442\pi\)
0.204504 + 0.978866i \(0.434442\pi\)
\(854\) 0 0
\(855\) −2767.65 −0.110703
\(856\) 0 0
\(857\) −23968.1 −0.955349 −0.477674 0.878537i \(-0.658520\pi\)
−0.477674 + 0.878537i \(0.658520\pi\)
\(858\) 0 0
\(859\) 21834.1 0.867254 0.433627 0.901092i \(-0.357234\pi\)
0.433627 + 0.901092i \(0.357234\pi\)
\(860\) 0 0
\(861\) 2900.95 0.114825
\(862\) 0 0
\(863\) 17619.2 0.694976 0.347488 0.937684i \(-0.387035\pi\)
0.347488 + 0.937684i \(0.387035\pi\)
\(864\) 0 0
\(865\) −41442.0 −1.62898
\(866\) 0 0
\(867\) 657.895 0.0257708
\(868\) 0 0
\(869\) −64876.6 −2.53255
\(870\) 0 0
\(871\) −2007.04 −0.0780782
\(872\) 0 0
\(873\) −7400.23 −0.286896
\(874\) 0 0
\(875\) 4492.55 0.173572
\(876\) 0 0
\(877\) −26798.1 −1.03182 −0.515911 0.856642i \(-0.672546\pi\)
−0.515911 + 0.856642i \(0.672546\pi\)
\(878\) 0 0
\(879\) −21509.7 −0.825373
\(880\) 0 0
\(881\) −17680.2 −0.676121 −0.338060 0.941124i \(-0.609771\pi\)
−0.338060 + 0.941124i \(0.609771\pi\)
\(882\) 0 0
\(883\) −37842.7 −1.44225 −0.721126 0.692804i \(-0.756375\pi\)
−0.721126 + 0.692804i \(0.756375\pi\)
\(884\) 0 0
\(885\) 25122.9 0.954235
\(886\) 0 0
\(887\) 38642.7 1.46279 0.731395 0.681954i \(-0.238870\pi\)
0.731395 + 0.681954i \(0.238870\pi\)
\(888\) 0 0
\(889\) −5973.21 −0.225349
\(890\) 0 0
\(891\) −5185.38 −0.194968
\(892\) 0 0
\(893\) 2850.17 0.106805
\(894\) 0 0
\(895\) −50096.3 −1.87099
\(896\) 0 0
\(897\) 5689.64 0.211785
\(898\) 0 0
\(899\) 63551.4 2.35768
\(900\) 0 0
\(901\) 8754.95 0.323718
\(902\) 0 0
\(903\) 583.415 0.0215004
\(904\) 0 0
\(905\) 16749.8 0.615230
\(906\) 0 0
\(907\) 13665.0 0.500263 0.250132 0.968212i \(-0.419526\pi\)
0.250132 + 0.968212i \(0.419526\pi\)
\(908\) 0 0
\(909\) 3201.58 0.116820
\(910\) 0 0
\(911\) −15935.3 −0.579540 −0.289770 0.957096i \(-0.593579\pi\)
−0.289770 + 0.957096i \(0.593579\pi\)
\(912\) 0 0
\(913\) 75597.8 2.74033
\(914\) 0 0
\(915\) −32402.6 −1.17071
\(916\) 0 0
\(917\) −2747.28 −0.0989349
\(918\) 0 0
\(919\) −32966.8 −1.18332 −0.591661 0.806187i \(-0.701528\pi\)
−0.591661 + 0.806187i \(0.701528\pi\)
\(920\) 0 0
\(921\) −18347.7 −0.656436
\(922\) 0 0
\(923\) 33894.2 1.20871
\(924\) 0 0
\(925\) 9645.89 0.342870
\(926\) 0 0
\(927\) 10332.1 0.366075
\(928\) 0 0
\(929\) −975.097 −0.0344369 −0.0172184 0.999852i \(-0.505481\pi\)
−0.0172184 + 0.999852i \(0.505481\pi\)
\(930\) 0 0
\(931\) 7741.34 0.272516
\(932\) 0 0
\(933\) 3559.59 0.124904
\(934\) 0 0
\(935\) −59285.8 −2.07364
\(936\) 0 0
\(937\) 23182.3 0.808251 0.404126 0.914703i \(-0.367576\pi\)
0.404126 + 0.914703i \(0.367576\pi\)
\(938\) 0 0
\(939\) −20177.1 −0.701230
\(940\) 0 0
\(941\) −7785.63 −0.269718 −0.134859 0.990865i \(-0.543058\pi\)
−0.134859 + 0.990865i \(0.543058\pi\)
\(942\) 0 0
\(943\) −5304.74 −0.183188
\(944\) 0 0
\(945\) −1463.34 −0.0503731
\(946\) 0 0
\(947\) 43868.4 1.50531 0.752656 0.658413i \(-0.228772\pi\)
0.752656 + 0.658413i \(0.228772\pi\)
\(948\) 0 0
\(949\) 79273.6 2.71162
\(950\) 0 0
\(951\) −13635.0 −0.464927
\(952\) 0 0
\(953\) 37311.9 1.26826 0.634129 0.773227i \(-0.281359\pi\)
0.634129 + 0.773227i \(0.281359\pi\)
\(954\) 0 0
\(955\) −58372.0 −1.97788
\(956\) 0 0
\(957\) −50877.6 −1.71854
\(958\) 0 0
\(959\) 2016.77 0.0679092
\(960\) 0 0
\(961\) 27757.1 0.931727
\(962\) 0 0
\(963\) −9043.51 −0.302620
\(964\) 0 0
\(965\) −22582.0 −0.753307
\(966\) 0 0
\(967\) 21234.7 0.706166 0.353083 0.935592i \(-0.385133\pi\)
0.353083 + 0.935592i \(0.385133\pi\)
\(968\) 0 0
\(969\) −5112.65 −0.169496
\(970\) 0 0
\(971\) −27275.5 −0.901454 −0.450727 0.892662i \(-0.648835\pi\)
−0.450727 + 0.892662i \(0.648835\pi\)
\(972\) 0 0
\(973\) −10311.6 −0.339748
\(974\) 0 0
\(975\) 10416.6 0.342152
\(976\) 0 0
\(977\) 23999.9 0.785900 0.392950 0.919560i \(-0.371455\pi\)
0.392950 + 0.919560i \(0.371455\pi\)
\(978\) 0 0
\(979\) −15793.8 −0.515600
\(980\) 0 0
\(981\) 77.4648 0.00252116
\(982\) 0 0
\(983\) −16482.7 −0.534807 −0.267403 0.963585i \(-0.586166\pi\)
−0.267403 + 0.963585i \(0.586166\pi\)
\(984\) 0 0
\(985\) −18422.5 −0.595928
\(986\) 0 0
\(987\) 1506.98 0.0485994
\(988\) 0 0
\(989\) −1066.84 −0.0343009
\(990\) 0 0
\(991\) 24348.4 0.780477 0.390238 0.920714i \(-0.372393\pi\)
0.390238 + 0.920714i \(0.372393\pi\)
\(992\) 0 0
\(993\) −6119.02 −0.195550
\(994\) 0 0
\(995\) −35460.4 −1.12982
\(996\) 0 0
\(997\) −16941.8 −0.538168 −0.269084 0.963117i \(-0.586721\pi\)
−0.269084 + 0.963117i \(0.586721\pi\)
\(998\) 0 0
\(999\) 6184.97 0.195880
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 552.4.a.k.1.5 6
3.2 odd 2 1656.4.a.q.1.2 6
4.3 odd 2 1104.4.a.z.1.5 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
552.4.a.k.1.5 6 1.1 even 1 trivial
1104.4.a.z.1.5 6 4.3 odd 2
1656.4.a.q.1.2 6 3.2 odd 2