Properties

Label 2-552-1.1-c3-0-12
Degree $2$
Conductor $552$
Sign $1$
Analytic cond. $32.5690$
Root an. cond. $5.70693$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3·3-s + 7.31·5-s + 27.4·7-s + 9·9-s + 39.7·11-s + 57.5·13-s − 21.9·15-s − 10.2·17-s − 52.7·19-s − 82.3·21-s + 23·23-s − 71.5·25-s − 27·27-s + 126.·29-s − 146.·31-s − 119.·33-s + 200.·35-s − 90.3·37-s − 172.·39-s + 61.1·41-s + 497.·43-s + 65.8·45-s + 102.·47-s + 410.·49-s + 30.7·51-s − 721.·53-s + 291.·55-s + ⋯
L(s)  = 1  − 0.577·3-s + 0.654·5-s + 1.48·7-s + 0.333·9-s + 1.09·11-s + 1.22·13-s − 0.377·15-s − 0.146·17-s − 0.636·19-s − 0.855·21-s + 0.208·23-s − 0.572·25-s − 0.192·27-s + 0.807·29-s − 0.847·31-s − 0.629·33-s + 0.969·35-s − 0.401·37-s − 0.709·39-s + 0.232·41-s + 1.76·43-s + 0.218·45-s + 0.319·47-s + 1.19·49-s + 0.0845·51-s − 1.86·53-s + 0.713·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 552 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 552 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(552\)    =    \(2^{3} \cdot 3 \cdot 23\)
Sign: $1$
Analytic conductor: \(32.5690\)
Root analytic conductor: \(5.70693\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 552,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(2.512028732\)
\(L(\frac12)\) \(\approx\) \(2.512028732\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + 3T \)
23 \( 1 - 23T \)
good5 \( 1 - 7.31T + 125T^{2} \)
7 \( 1 - 27.4T + 343T^{2} \)
11 \( 1 - 39.7T + 1.33e3T^{2} \)
13 \( 1 - 57.5T + 2.19e3T^{2} \)
17 \( 1 + 10.2T + 4.91e3T^{2} \)
19 \( 1 + 52.7T + 6.85e3T^{2} \)
29 \( 1 - 126.T + 2.43e4T^{2} \)
31 \( 1 + 146.T + 2.97e4T^{2} \)
37 \( 1 + 90.3T + 5.06e4T^{2} \)
41 \( 1 - 61.1T + 6.89e4T^{2} \)
43 \( 1 - 497.T + 7.95e4T^{2} \)
47 \( 1 - 102.T + 1.03e5T^{2} \)
53 \( 1 + 721.T + 1.48e5T^{2} \)
59 \( 1 - 234.T + 2.05e5T^{2} \)
61 \( 1 + 507.T + 2.26e5T^{2} \)
67 \( 1 - 58.4T + 3.00e5T^{2} \)
71 \( 1 - 1.15e3T + 3.57e5T^{2} \)
73 \( 1 + 660.T + 3.89e5T^{2} \)
79 \( 1 - 1.39e3T + 4.93e5T^{2} \)
83 \( 1 + 81.5T + 5.71e5T^{2} \)
89 \( 1 + 185.T + 7.04e5T^{2} \)
97 \( 1 - 830.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.72333239338764522635719584312, −9.430540420609958118230234555437, −8.676097764771118105162416112154, −7.72944715710183126585735769360, −6.51673604665231398389287440982, −5.83756694330983255693371669468, −4.78238024789666844304190774673, −3.86059166976110884683220124098, −1.96762990670601376326323064255, −1.11257299332890150261943493110, 1.11257299332890150261943493110, 1.96762990670601376326323064255, 3.86059166976110884683220124098, 4.78238024789666844304190774673, 5.83756694330983255693371669468, 6.51673604665231398389287440982, 7.72944715710183126585735769360, 8.676097764771118105162416112154, 9.430540420609958118230234555437, 10.72333239338764522635719584312

Graph of the $Z$-function along the critical line