Properties

Label 552.4.a.c
Level $552$
Weight $4$
Character orbit 552.a
Self dual yes
Analytic conductor $32.569$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [552,4,Mod(1,552)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(552, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("552.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 552 = 2^{3} \cdot 3 \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 552.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,-6,0,-8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(32.5690543232\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{2}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = 2\sqrt{2}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - 3 q^{3} + (4 \beta - 4) q^{5} + (9 \beta + 2) q^{7} + 9 q^{9} + (7 \beta + 20) q^{11} + (14 \beta + 18) q^{13} + ( - 12 \beta + 12) q^{15} + (19 \beta - 64) q^{17} + (16 \beta - 98) q^{19} + ( - 27 \beta - 6) q^{21}+ \cdots + (63 \beta + 180) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 6 q^{3} - 8 q^{5} + 4 q^{7} + 18 q^{9} + 40 q^{11} + 36 q^{13} + 24 q^{15} - 128 q^{17} - 196 q^{19} - 12 q^{21} + 46 q^{23} + 38 q^{25} - 54 q^{27} - 76 q^{29} - 168 q^{31} - 120 q^{33} + 560 q^{35}+ \cdots + 360 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−1.41421
1.41421
0 −3.00000 0 −15.3137 0 −23.4558 0 9.00000 0
1.2 0 −3.00000 0 7.31371 0 27.4558 0 9.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(3\) \( +1 \)
\(23\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 552.4.a.c 2
3.b odd 2 1 1656.4.a.g 2
4.b odd 2 1 1104.4.a.m 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
552.4.a.c 2 1.a even 1 1 trivial
1104.4.a.m 2 4.b odd 2 1
1656.4.a.g 2 3.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{2} + 8T_{5} - 112 \) acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(552))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( (T + 3)^{2} \) Copy content Toggle raw display
$5$ \( T^{2} + 8T - 112 \) Copy content Toggle raw display
$7$ \( T^{2} - 4T - 644 \) Copy content Toggle raw display
$11$ \( T^{2} - 40T + 8 \) Copy content Toggle raw display
$13$ \( T^{2} - 36T - 1244 \) Copy content Toggle raw display
$17$ \( T^{2} + 128T + 1208 \) Copy content Toggle raw display
$19$ \( T^{2} + 196T + 7556 \) Copy content Toggle raw display
$23$ \( (T - 23)^{2} \) Copy content Toggle raw display
$29$ \( T^{2} + 76T - 25468 \) Copy content Toggle raw display
$31$ \( T^{2} + 168T + 3184 \) Copy content Toggle raw display
$37$ \( T^{2} + 28T - 5636 \) Copy content Toggle raw display
$41$ \( T^{2} - 292T + 14116 \) Copy content Toggle raw display
$43$ \( T^{2} - 780T + 140548 \) Copy content Toggle raw display
$47$ \( T^{2} - 432T + 33856 \) Copy content Toggle raw display
$53$ \( T^{2} + 368T - 254944 \) Copy content Toggle raw display
$59$ \( T^{2} + 40T - 64400 \) Copy content Toggle raw display
$61$ \( T^{2} + 556T + 24796 \) Copy content Toggle raw display
$67$ \( T^{2} + 460T - 30332 \) Copy content Toggle raw display
$71$ \( T^{2} - 2112 T + 1105888 \) Copy content Toggle raw display
$73$ \( T^{2} + 1548 T + 586276 \) Copy content Toggle raw display
$79$ \( T^{2} - 1420T + 31708 \) Copy content Toggle raw display
$83$ \( T^{2} - 216T - 24248 \) Copy content Toggle raw display
$89$ \( T^{2} + 1112 T + 171848 \) Copy content Toggle raw display
$97$ \( T^{2} - 348T - 400316 \) Copy content Toggle raw display
show more
show less