L(s) = 1 | + (0.587 − 0.809i)2-s + (3.20 + 1.04i)3-s + (−0.309 − 0.951i)4-s + (2.72 − 1.98i)6-s + (0.177 − 0.0577i)7-s + (−0.951 − 0.309i)8-s + (6.77 + 4.92i)9-s + (−0.359 − 3.29i)11-s − 3.37i·12-s + (−1.79 + 2.46i)13-s + (0.0577 − 0.177i)14-s + (−0.809 + 0.587i)16-s + (−1.73 − 2.38i)17-s + (7.96 − 2.58i)18-s + (−1.66 + 5.11i)19-s + ⋯ |
L(s) = 1 | + (0.415 − 0.572i)2-s + (1.85 + 0.601i)3-s + (−0.154 − 0.475i)4-s + (1.11 − 0.809i)6-s + (0.0672 − 0.0218i)7-s + (−0.336 − 0.109i)8-s + (2.25 + 1.64i)9-s + (−0.108 − 0.994i)11-s − 0.973i·12-s + (−0.497 + 0.684i)13-s + (0.0154 − 0.0475i)14-s + (−0.202 + 0.146i)16-s + (−0.420 − 0.578i)17-s + (1.87 − 0.610i)18-s + (−0.381 + 1.17i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 550 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.945 + 0.325i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 550 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.945 + 0.325i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(3.05029 - 0.509790i\) |
\(L(\frac12)\) |
\(\approx\) |
\(3.05029 - 0.509790i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.587 + 0.809i)T \) |
| 5 | \( 1 \) |
| 11 | \( 1 + (0.359 + 3.29i)T \) |
good | 3 | \( 1 + (-3.20 - 1.04i)T + (2.42 + 1.76i)T^{2} \) |
| 7 | \( 1 + (-0.177 + 0.0577i)T + (5.66 - 4.11i)T^{2} \) |
| 13 | \( 1 + (1.79 - 2.46i)T + (-4.01 - 12.3i)T^{2} \) |
| 17 | \( 1 + (1.73 + 2.38i)T + (-5.25 + 16.1i)T^{2} \) |
| 19 | \( 1 + (1.66 - 5.11i)T + (-15.3 - 11.1i)T^{2} \) |
| 23 | \( 1 + 0.115iT - 23T^{2} \) |
| 29 | \( 1 + (3.14 + 9.67i)T + (-23.4 + 17.0i)T^{2} \) |
| 31 | \( 1 + (6.22 + 4.52i)T + (9.57 + 29.4i)T^{2} \) |
| 37 | \( 1 + (-6.41 + 2.08i)T + (29.9 - 21.7i)T^{2} \) |
| 41 | \( 1 + (1.44 - 4.45i)T + (-33.1 - 24.0i)T^{2} \) |
| 43 | \( 1 - 2.27iT - 43T^{2} \) |
| 47 | \( 1 + (-6.04 - 1.96i)T + (38.0 + 27.6i)T^{2} \) |
| 53 | \( 1 + (4.73 - 6.51i)T + (-16.3 - 50.4i)T^{2} \) |
| 59 | \( 1 + (-0.479 - 1.47i)T + (-47.7 + 34.6i)T^{2} \) |
| 61 | \( 1 + (0.711 - 0.516i)T + (18.8 - 58.0i)T^{2} \) |
| 67 | \( 1 + 9.03iT - 67T^{2} \) |
| 71 | \( 1 + (-0.533 + 0.387i)T + (21.9 - 67.5i)T^{2} \) |
| 73 | \( 1 + (-2.21 + 0.720i)T + (59.0 - 42.9i)T^{2} \) |
| 79 | \( 1 + (7.45 + 5.41i)T + (24.4 + 75.1i)T^{2} \) |
| 83 | \( 1 + (-1.86 - 2.57i)T + (-25.6 + 78.9i)T^{2} \) |
| 89 | \( 1 - 6.69T + 89T^{2} \) |
| 97 | \( 1 + (-5.20 + 7.16i)T + (-29.9 - 92.2i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.64883161455327042426100107636, −9.584912909144362188124380194422, −9.294192457054655209820369254349, −8.191480205024924432817173291278, −7.54182716074316159518056374914, −6.01142650411619898360078255878, −4.54590132400195117287454569878, −3.89203214048352041668729428001, −2.85582070503456579755333909846, −1.94566010348849031796983271754,
1.91186523381395840065117814132, 2.95594859978079807858206327290, 3.98816986756747554714665213168, 5.10347959534660326082240831930, 6.82163148966616368332102807742, 7.18915932545896040226826545007, 8.112562771279229956167250763947, 8.861017209345158882440331937319, 9.546790435453393141899019911100, 10.65602335380081887802133801225