L(s) = 1 | + (0.809 + 0.587i)2-s + (0.5 − 1.53i)3-s + (0.309 + 0.951i)4-s + (1.30 − 0.951i)6-s + (−1.54 − 4.76i)7-s + (−0.309 + 0.951i)8-s + (0.309 + 0.224i)9-s + (−0.969 − 3.17i)11-s + 1.61·12-s + (−1.88 − 1.37i)13-s + (1.54 − 4.76i)14-s + (−0.809 + 0.587i)16-s + (−0.0494 + 0.0359i)17-s + (0.118 + 0.363i)18-s + (−0.636 + 1.96i)19-s + ⋯ |
L(s) = 1 | + (0.572 + 0.415i)2-s + (0.288 − 0.888i)3-s + (0.154 + 0.475i)4-s + (0.534 − 0.388i)6-s + (−0.585 − 1.80i)7-s + (−0.109 + 0.336i)8-s + (0.103 + 0.0748i)9-s + (−0.292 − 0.956i)11-s + 0.467·12-s + (−0.523 − 0.380i)13-s + (0.414 − 1.27i)14-s + (−0.202 + 0.146i)16-s + (−0.0119 + 0.00871i)17-s + (0.0278 + 0.0856i)18-s + (−0.146 + 0.449i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 550 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.314 + 0.949i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 550 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.314 + 0.949i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.57326 - 1.13556i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.57326 - 1.13556i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.809 - 0.587i)T \) |
| 5 | \( 1 \) |
| 11 | \( 1 + (0.969 + 3.17i)T \) |
good | 3 | \( 1 + (-0.5 + 1.53i)T + (-2.42 - 1.76i)T^{2} \) |
| 7 | \( 1 + (1.54 + 4.76i)T + (-5.66 + 4.11i)T^{2} \) |
| 13 | \( 1 + (1.88 + 1.37i)T + (4.01 + 12.3i)T^{2} \) |
| 17 | \( 1 + (0.0494 - 0.0359i)T + (5.25 - 16.1i)T^{2} \) |
| 19 | \( 1 + (0.636 - 1.96i)T + (-15.3 - 11.1i)T^{2} \) |
| 23 | \( 1 - 3.91T + 23T^{2} \) |
| 29 | \( 1 + (1.27 + 3.93i)T + (-23.4 + 17.0i)T^{2} \) |
| 31 | \( 1 + (-7.18 - 5.21i)T + (9.57 + 29.4i)T^{2} \) |
| 37 | \( 1 + (-1.40 - 4.33i)T + (-29.9 + 21.7i)T^{2} \) |
| 41 | \( 1 + (1.41 - 4.35i)T + (-33.1 - 24.0i)T^{2} \) |
| 43 | \( 1 - 3.61T + 43T^{2} \) |
| 47 | \( 1 + (-2.74 + 8.44i)T + (-38.0 - 27.6i)T^{2} \) |
| 53 | \( 1 + (1.79 + 1.30i)T + (16.3 + 50.4i)T^{2} \) |
| 59 | \( 1 + (-0.599 - 1.84i)T + (-47.7 + 34.6i)T^{2} \) |
| 61 | \( 1 + (-7.84 + 5.69i)T + (18.8 - 58.0i)T^{2} \) |
| 67 | \( 1 - 2.49T + 67T^{2} \) |
| 71 | \( 1 + (7.13 - 5.18i)T + (21.9 - 67.5i)T^{2} \) |
| 73 | \( 1 + (-1.66 - 5.13i)T + (-59.0 + 42.9i)T^{2} \) |
| 79 | \( 1 + (-5.38 - 3.91i)T + (24.4 + 75.1i)T^{2} \) |
| 83 | \( 1 + (8.94 - 6.49i)T + (25.6 - 78.9i)T^{2} \) |
| 89 | \( 1 - 6.09T + 89T^{2} \) |
| 97 | \( 1 + (-5.90 - 4.29i)T + (29.9 + 92.2i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.56834284452477203786378624759, −9.939191486250626601643903543221, −8.388877105783864736126789577343, −7.72793886394795568918189275637, −6.97038624863716372117627512590, −6.34063606627013631174013002364, −4.95540834343492030915095280659, −3.84941254674470441719693048215, −2.80727263070080031999593667181, −0.936314851836682536098054823893,
2.24859493789593086279761762002, 3.06143545473026723043816999094, 4.38359058292658591377835011541, 5.12326141747653869523248597668, 6.14913280308214867558950280459, 7.22445508660060874374092207882, 8.774381158747919114706943936294, 9.381439993148592387028768775824, 9.928847726376719834180531378970, 10.96914353980788697193766041225