Properties

Label 2-550-1.1-c7-0-70
Degree $2$
Conductor $550$
Sign $-1$
Analytic cond. $171.811$
Root an. cond. $13.1076$
Motivic weight $7$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 8·2-s − 91·3-s + 64·4-s − 728·6-s + 722·7-s + 512·8-s + 6.09e3·9-s − 1.33e3·11-s − 5.82e3·12-s − 1.10e4·13-s + 5.77e3·14-s + 4.09e3·16-s + 1.72e4·17-s + 4.87e4·18-s − 9.28e3·19-s − 6.57e4·21-s − 1.06e4·22-s − 2.29e4·23-s − 4.65e4·24-s − 8.81e4·26-s − 3.55e5·27-s + 4.62e4·28-s + 1.34e5·29-s − 2.87e5·31-s + 3.27e4·32-s + 1.21e5·33-s + 1.37e5·34-s + ⋯
L(s)  = 1  + 0.707·2-s − 1.94·3-s + 1/2·4-s − 1.37·6-s + 0.795·7-s + 0.353·8-s + 2.78·9-s − 0.301·11-s − 0.972·12-s − 1.39·13-s + 0.562·14-s + 1/4·16-s + 0.849·17-s + 1.97·18-s − 0.310·19-s − 1.54·21-s − 0.213·22-s − 0.393·23-s − 0.687·24-s − 0.983·26-s − 3.47·27-s + 0.397·28-s + 1.02·29-s − 1.73·31-s + 0.176·32-s + 0.586·33-s + 0.600·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 550 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 550 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(550\)    =    \(2 \cdot 5^{2} \cdot 11\)
Sign: $-1$
Analytic conductor: \(171.811\)
Root analytic conductor: \(13.1076\)
Motivic weight: \(7\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 550,\ (\ :7/2),\ -1)\)

Particular Values

\(L(4)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{9}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - p^{3} T \)
5 \( 1 \)
11 \( 1 + p^{3} T \)
good3 \( 1 + 91 T + p^{7} T^{2} \)
7 \( 1 - 722 T + p^{7} T^{2} \)
13 \( 1 + 11020 T + p^{7} T^{2} \)
17 \( 1 - 17210 T + p^{7} T^{2} \)
19 \( 1 + 9288 T + p^{7} T^{2} \)
23 \( 1 + 22971 T + p^{7} T^{2} \)
29 \( 1 - 134272 T + p^{7} T^{2} \)
31 \( 1 + 287765 T + p^{7} T^{2} \)
37 \( 1 - 316397 T + p^{7} T^{2} \)
41 \( 1 + 335968 T + p^{7} T^{2} \)
43 \( 1 - 858110 T + p^{7} T^{2} \)
47 \( 1 + 587680 T + p^{7} T^{2} \)
53 \( 1 - 244238 T + p^{7} T^{2} \)
59 \( 1 + 163287 T + p^{7} T^{2} \)
61 \( 1 - 37660 p T + p^{7} T^{2} \)
67 \( 1 - 3428283 T + p^{7} T^{2} \)
71 \( 1 - 1542953 T + p^{7} T^{2} \)
73 \( 1 + 2216316 T + p^{7} T^{2} \)
79 \( 1 - 1526014 T + p^{7} T^{2} \)
83 \( 1 + 1650370 T + p^{7} T^{2} \)
89 \( 1 - 5760847 T + p^{7} T^{2} \)
97 \( 1 - 5750759 T + p^{7} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.686574794452388152463226373771, −7.85971602177703717231467096094, −7.17491585815831900922688569366, −6.23313901137218535909264641013, −5.30231498458645271375746041976, −4.93083863987974559133625873490, −3.96659429458227352370193862693, −2.21897956518606241730740638180, −1.10298617820915972211480482212, 0, 1.10298617820915972211480482212, 2.21897956518606241730740638180, 3.96659429458227352370193862693, 4.93083863987974559133625873490, 5.30231498458645271375746041976, 6.23313901137218535909264641013, 7.17491585815831900922688569366, 7.85971602177703717231467096094, 9.686574794452388152463226373771

Graph of the $Z$-function along the critical line