Properties

Label 2-550-1.1-c5-0-53
Degree $2$
Conductor $550$
Sign $1$
Analytic cond. $88.2111$
Root an. cond. $9.39207$
Motivic weight $5$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·2-s + 29·3-s + 16·4-s − 116·6-s + 230·7-s − 64·8-s + 598·9-s + 121·11-s + 464·12-s − 112·13-s − 920·14-s + 256·16-s + 1.14e3·17-s − 2.39e3·18-s − 612·19-s + 6.67e3·21-s − 484·22-s + 1.94e3·23-s − 1.85e3·24-s + 448·26-s + 1.02e4·27-s + 3.68e3·28-s + 1.19e3·29-s − 1.03e3·31-s − 1.02e3·32-s + 3.50e3·33-s − 4.56e3·34-s + ⋯
L(s)  = 1  − 0.707·2-s + 1.86·3-s + 1/2·4-s − 1.31·6-s + 1.77·7-s − 0.353·8-s + 2.46·9-s + 0.301·11-s + 0.930·12-s − 0.183·13-s − 1.25·14-s + 1/4·16-s + 0.958·17-s − 1.74·18-s − 0.388·19-s + 3.30·21-s − 0.213·22-s + 0.765·23-s − 0.657·24-s + 0.129·26-s + 2.71·27-s + 0.887·28-s + 0.263·29-s − 0.193·31-s − 0.176·32-s + 0.560·33-s − 0.677·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 550 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 550 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(550\)    =    \(2 \cdot 5^{2} \cdot 11\)
Sign: $1$
Analytic conductor: \(88.2111\)
Root analytic conductor: \(9.39207\)
Motivic weight: \(5\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 550,\ (\ :5/2),\ 1)\)

Particular Values

\(L(3)\) \(\approx\) \(4.573370496\)
\(L(\frac12)\) \(\approx\) \(4.573370496\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + p^{2} T \)
5 \( 1 \)
11 \( 1 - p^{2} T \)
good3 \( 1 - 29 T + p^{5} T^{2} \)
7 \( 1 - 230 T + p^{5} T^{2} \)
13 \( 1 + 112 T + p^{5} T^{2} \)
17 \( 1 - 1142 T + p^{5} T^{2} \)
19 \( 1 + 612 T + p^{5} T^{2} \)
23 \( 1 - 1941 T + p^{5} T^{2} \)
29 \( 1 - 1192 T + p^{5} T^{2} \)
31 \( 1 + 1037 T + p^{5} T^{2} \)
37 \( 1 + 8083 T + p^{5} T^{2} \)
41 \( 1 + 10444 T + p^{5} T^{2} \)
43 \( 1 + 58 T + p^{5} T^{2} \)
47 \( 1 + 8656 T + p^{5} T^{2} \)
53 \( 1 - 20318 T + p^{5} T^{2} \)
59 \( 1 + 21351 T + p^{5} T^{2} \)
61 \( 1 - 47044 T + p^{5} T^{2} \)
67 \( 1 + 48093 T + p^{5} T^{2} \)
71 \( 1 + 24967 T + p^{5} T^{2} \)
73 \( 1 - 42288 T + p^{5} T^{2} \)
79 \( 1 + 72410 T + p^{5} T^{2} \)
83 \( 1 - 15806 T + p^{5} T^{2} \)
89 \( 1 + 114761 T + p^{5} T^{2} \)
97 \( 1 - 5159 T + p^{5} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.812159982116593362893011015017, −8.778602169194059161117056669872, −8.420573416234454948909027369281, −7.65921746914077168145223107814, −6.98474070466952244168611677980, −5.18601180409481052653832367908, −4.08802700269469330489906511024, −2.96235891418125549615666711904, −1.89083407067157941679845223933, −1.24138053693616527421602824271, 1.24138053693616527421602824271, 1.89083407067157941679845223933, 2.96235891418125549615666711904, 4.08802700269469330489906511024, 5.18601180409481052653832367908, 6.98474070466952244168611677980, 7.65921746914077168145223107814, 8.420573416234454948909027369281, 8.778602169194059161117056669872, 9.812159982116593362893011015017

Graph of the $Z$-function along the critical line