Properties

Label 2-550-1.1-c5-0-15
Degree $2$
Conductor $550$
Sign $1$
Analytic cond. $88.2111$
Root an. cond. $9.39207$
Motivic weight $5$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4·2-s − 12·3-s + 16·4-s − 48·6-s − 54·7-s + 64·8-s − 99·9-s − 121·11-s − 192·12-s + 540·13-s − 216·14-s + 256·16-s − 340·17-s − 396·18-s − 952·19-s + 648·21-s − 484·22-s − 1.09e3·23-s − 768·24-s + 2.16e3·26-s + 4.10e3·27-s − 864·28-s − 62·29-s − 7.56e3·31-s + 1.02e3·32-s + 1.45e3·33-s − 1.36e3·34-s + ⋯
L(s)  = 1  + 0.707·2-s − 0.769·3-s + 1/2·4-s − 0.544·6-s − 0.416·7-s + 0.353·8-s − 0.407·9-s − 0.301·11-s − 0.384·12-s + 0.886·13-s − 0.294·14-s + 1/4·16-s − 0.285·17-s − 0.288·18-s − 0.604·19-s + 0.320·21-s − 0.213·22-s − 0.430·23-s − 0.272·24-s + 0.626·26-s + 1.08·27-s − 0.208·28-s − 0.0136·29-s − 1.41·31-s + 0.176·32-s + 0.232·33-s − 0.201·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 550 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 550 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(550\)    =    \(2 \cdot 5^{2} \cdot 11\)
Sign: $1$
Analytic conductor: \(88.2111\)
Root analytic conductor: \(9.39207\)
Motivic weight: \(5\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 550,\ (\ :5/2),\ 1)\)

Particular Values

\(L(3)\) \(\approx\) \(1.923659891\)
\(L(\frac12)\) \(\approx\) \(1.923659891\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - p^{2} T \)
5 \( 1 \)
11 \( 1 + p^{2} T \)
good3 \( 1 + 4 p T + p^{5} T^{2} \)
7 \( 1 + 54 T + p^{5} T^{2} \)
13 \( 1 - 540 T + p^{5} T^{2} \)
17 \( 1 + 20 p T + p^{5} T^{2} \)
19 \( 1 + 952 T + p^{5} T^{2} \)
23 \( 1 + 1092 T + p^{5} T^{2} \)
29 \( 1 + 62 T + p^{5} T^{2} \)
31 \( 1 + 7560 T + p^{5} T^{2} \)
37 \( 1 - 9186 T + p^{5} T^{2} \)
41 \( 1 + 6818 T + p^{5} T^{2} \)
43 \( 1 - 13310 T + p^{5} T^{2} \)
47 \( 1 - 22420 T + p^{5} T^{2} \)
53 \( 1 + 19654 T + p^{5} T^{2} \)
59 \( 1 - 48292 T + p^{5} T^{2} \)
61 \( 1 - 17530 T + p^{5} T^{2} \)
67 \( 1 - 35344 T + p^{5} T^{2} \)
71 \( 1 + 22912 T + p^{5} T^{2} \)
73 \( 1 + 47852 T + p^{5} T^{2} \)
79 \( 1 - 52396 T + p^{5} T^{2} \)
83 \( 1 + 7890 T + p^{5} T^{2} \)
89 \( 1 - 41958 T + p^{5} T^{2} \)
97 \( 1 - 37602 T + p^{5} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.35058802351780721677457599000, −9.135264351073326913665845711425, −8.155616085305958331443813569918, −6.97685599497818512267969668630, −6.09346494683228218795199206524, −5.55536320263920430355280103960, −4.40485537499184903148190596113, −3.38853311615114792164802786861, −2.16899600376030820963736545494, −0.62141487168798045446959124604, 0.62141487168798045446959124604, 2.16899600376030820963736545494, 3.38853311615114792164802786861, 4.40485537499184903148190596113, 5.55536320263920430355280103960, 6.09346494683228218795199206524, 6.97685599497818512267969668630, 8.155616085305958331443813569918, 9.135264351073326913665845711425, 10.35058802351780721677457599000

Graph of the $Z$-function along the critical line