Properties

Label 2-550-1.1-c3-0-8
Degree $2$
Conductor $550$
Sign $1$
Analytic cond. $32.4510$
Root an. cond. $5.69658$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·2-s − 4·3-s + 4·4-s − 8·6-s − 20·7-s + 8·8-s − 11·9-s + 11·11-s − 16·12-s − 26·13-s − 40·14-s + 16·16-s + 42·17-s − 22·18-s + 116·19-s + 80·21-s + 22·22-s − 96·23-s − 32·24-s − 52·26-s + 152·27-s − 80·28-s + 270·29-s + 32·31-s + 32·32-s − 44·33-s + 84·34-s + ⋯
L(s)  = 1  + 0.707·2-s − 0.769·3-s + 1/2·4-s − 0.544·6-s − 1.07·7-s + 0.353·8-s − 0.407·9-s + 0.301·11-s − 0.384·12-s − 0.554·13-s − 0.763·14-s + 1/4·16-s + 0.599·17-s − 0.288·18-s + 1.40·19-s + 0.831·21-s + 0.213·22-s − 0.870·23-s − 0.272·24-s − 0.392·26-s + 1.08·27-s − 0.539·28-s + 1.72·29-s + 0.185·31-s + 0.176·32-s − 0.232·33-s + 0.423·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 550 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 550 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(550\)    =    \(2 \cdot 5^{2} \cdot 11\)
Sign: $1$
Analytic conductor: \(32.4510\)
Root analytic conductor: \(5.69658\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 550,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(1.855267160\)
\(L(\frac12)\) \(\approx\) \(1.855267160\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - p T \)
5 \( 1 \)
11 \( 1 - p T \)
good3 \( 1 + 4 T + p^{3} T^{2} \)
7 \( 1 + 20 T + p^{3} T^{2} \)
13 \( 1 + 2 p T + p^{3} T^{2} \)
17 \( 1 - 42 T + p^{3} T^{2} \)
19 \( 1 - 116 T + p^{3} T^{2} \)
23 \( 1 + 96 T + p^{3} T^{2} \)
29 \( 1 - 270 T + p^{3} T^{2} \)
31 \( 1 - 32 T + p^{3} T^{2} \)
37 \( 1 - 106 T + p^{3} T^{2} \)
41 \( 1 + 462 T + p^{3} T^{2} \)
43 \( 1 - 40 T + p^{3} T^{2} \)
47 \( 1 - 504 T + p^{3} T^{2} \)
53 \( 1 - 570 T + p^{3} T^{2} \)
59 \( 1 - 12 T + p^{3} T^{2} \)
61 \( 1 - 590 T + p^{3} T^{2} \)
67 \( 1 - 388 T + p^{3} T^{2} \)
71 \( 1 + 240 T + p^{3} T^{2} \)
73 \( 1 + 302 T + p^{3} T^{2} \)
79 \( 1 - 8 T + p^{3} T^{2} \)
83 \( 1 - 48 T + p^{3} T^{2} \)
89 \( 1 - 282 T + p^{3} T^{2} \)
97 \( 1 - 646 T + p^{3} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.32002782409273336596716402898, −9.870833230541643391923256351147, −8.603790594725400416938942686860, −7.35692158441482337864049646292, −6.49350711618721320741673438405, −5.75135730552851627835460700403, −4.92216677344571270966857252006, −3.61216206643723181482269141439, −2.66873786900275204770967184638, −0.76402215059878645310894876614, 0.76402215059878645310894876614, 2.66873786900275204770967184638, 3.61216206643723181482269141439, 4.92216677344571270966857252006, 5.75135730552851627835460700403, 6.49350711618721320741673438405, 7.35692158441482337864049646292, 8.603790594725400416938942686860, 9.870833230541643391923256351147, 10.32002782409273336596716402898

Graph of the $Z$-function along the critical line