Properties

Label 2-550-1.1-c3-0-28
Degree $2$
Conductor $550$
Sign $-1$
Analytic cond. $32.4510$
Root an. cond. $5.69658$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·2-s − 3-s + 4·4-s + 2·6-s + 10·7-s − 8·8-s − 26·9-s + 11·11-s − 4·12-s + 16·13-s − 20·14-s + 16·16-s − 42·17-s + 52·18-s + 116·19-s − 10·21-s − 22·22-s − 189·23-s + 8·24-s − 32·26-s + 53·27-s + 40·28-s − 120·29-s − 163·31-s − 32·32-s − 11·33-s + 84·34-s + ⋯
L(s)  = 1  − 0.707·2-s − 0.192·3-s + 1/2·4-s + 0.136·6-s + 0.539·7-s − 0.353·8-s − 0.962·9-s + 0.301·11-s − 0.0962·12-s + 0.341·13-s − 0.381·14-s + 1/4·16-s − 0.599·17-s + 0.680·18-s + 1.40·19-s − 0.103·21-s − 0.213·22-s − 1.71·23-s + 0.0680·24-s − 0.241·26-s + 0.377·27-s + 0.269·28-s − 0.768·29-s − 0.944·31-s − 0.176·32-s − 0.0580·33-s + 0.423·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 550 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 550 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(550\)    =    \(2 \cdot 5^{2} \cdot 11\)
Sign: $-1$
Analytic conductor: \(32.4510\)
Root analytic conductor: \(5.69658\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 550,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + p T \)
5 \( 1 \)
11 \( 1 - p T \)
good3 \( 1 + T + p^{3} T^{2} \)
7 \( 1 - 10 T + p^{3} T^{2} \)
13 \( 1 - 16 T + p^{3} T^{2} \)
17 \( 1 + 42 T + p^{3} T^{2} \)
19 \( 1 - 116 T + p^{3} T^{2} \)
23 \( 1 + 189 T + p^{3} T^{2} \)
29 \( 1 + 120 T + p^{3} T^{2} \)
31 \( 1 + 163 T + p^{3} T^{2} \)
37 \( 1 - 409 T + p^{3} T^{2} \)
41 \( 1 - 468 T + p^{3} T^{2} \)
43 \( 1 + 110 T + p^{3} T^{2} \)
47 \( 1 + 144 T + p^{3} T^{2} \)
53 \( 1 + 90 T + p^{3} T^{2} \)
59 \( 1 + 453 T + p^{3} T^{2} \)
61 \( 1 - 20 T + p^{3} T^{2} \)
67 \( 1 - 97 T + p^{3} T^{2} \)
71 \( 1 + 465 T + p^{3} T^{2} \)
73 \( 1 + 848 T + p^{3} T^{2} \)
79 \( 1 + 742 T + p^{3} T^{2} \)
83 \( 1 + 438 T + p^{3} T^{2} \)
89 \( 1 + 273 T + p^{3} T^{2} \)
97 \( 1 + 761 T + p^{3} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.781490440194465031761464399418, −9.118041139190887783756742623834, −8.139922817075211611891164600254, −7.50754366206605361090710500222, −6.21800635108522908708199851194, −5.53721567368274676935955976887, −4.13439774818370383725110499228, −2.78033951042288490809570261059, −1.47332427658300395880352447823, 0, 1.47332427658300395880352447823, 2.78033951042288490809570261059, 4.13439774818370383725110499228, 5.53721567368274676935955976887, 6.21800635108522908708199851194, 7.50754366206605361090710500222, 8.139922817075211611891164600254, 9.118041139190887783756742623834, 9.781490440194465031761464399418

Graph of the $Z$-function along the critical line