Properties

Label 2-550-1.1-c3-0-21
Degree $2$
Conductor $550$
Sign $1$
Analytic cond. $32.4510$
Root an. cond. $5.69658$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·2-s + 2·3-s + 4·4-s + 4·6-s + 16·7-s + 8·8-s − 23·9-s + 11·11-s + 8·12-s + 37·13-s + 32·14-s + 16·16-s + 36·17-s − 46·18-s + 5·19-s + 32·21-s + 22·22-s + 87·23-s + 16·24-s + 74·26-s − 100·27-s + 64·28-s + 45·29-s + 167·31-s + 32·32-s + 22·33-s + 72·34-s + ⋯
L(s)  = 1  + 0.707·2-s + 0.384·3-s + 1/2·4-s + 0.272·6-s + 0.863·7-s + 0.353·8-s − 0.851·9-s + 0.301·11-s + 0.192·12-s + 0.789·13-s + 0.610·14-s + 1/4·16-s + 0.513·17-s − 0.602·18-s + 0.0603·19-s + 0.332·21-s + 0.213·22-s + 0.788·23-s + 0.136·24-s + 0.558·26-s − 0.712·27-s + 0.431·28-s + 0.288·29-s + 0.967·31-s + 0.176·32-s + 0.116·33-s + 0.363·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 550 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 550 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(550\)    =    \(2 \cdot 5^{2} \cdot 11\)
Sign: $1$
Analytic conductor: \(32.4510\)
Root analytic conductor: \(5.69658\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 550,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(4.052331364\)
\(L(\frac12)\) \(\approx\) \(4.052331364\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - p T \)
5 \( 1 \)
11 \( 1 - p T \)
good3 \( 1 - 2 T + p^{3} T^{2} \)
7 \( 1 - 16 T + p^{3} T^{2} \)
13 \( 1 - 37 T + p^{3} T^{2} \)
17 \( 1 - 36 T + p^{3} T^{2} \)
19 \( 1 - 5 T + p^{3} T^{2} \)
23 \( 1 - 87 T + p^{3} T^{2} \)
29 \( 1 - 45 T + p^{3} T^{2} \)
31 \( 1 - 167 T + p^{3} T^{2} \)
37 \( 1 - 196 T + p^{3} T^{2} \)
41 \( 1 - 72 T + p^{3} T^{2} \)
43 \( 1 + 233 T + p^{3} T^{2} \)
47 \( 1 - 336 T + p^{3} T^{2} \)
53 \( 1 + 78 T + p^{3} T^{2} \)
59 \( 1 + 720 T + p^{3} T^{2} \)
61 \( 1 - 482 T + p^{3} T^{2} \)
67 \( 1 - 166 T + p^{3} T^{2} \)
71 \( 1 - 1137 T + p^{3} T^{2} \)
73 \( 1 + 308 T + p^{3} T^{2} \)
79 \( 1 + 160 T + p^{3} T^{2} \)
83 \( 1 + 813 T + p^{3} T^{2} \)
89 \( 1 - 1155 T + p^{3} T^{2} \)
97 \( 1 + 299 T + p^{3} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.66549987268283273064356207248, −9.420478260920065726433394961507, −8.439489137236327858679655115808, −7.82212412482357628655027254615, −6.58759343164760590824341573690, −5.66310835727941098619585575156, −4.72423558051504695274317121298, −3.60037820681019830543435603488, −2.57984890714859215866876112412, −1.19630817976044843110812673907, 1.19630817976044843110812673907, 2.57984890714859215866876112412, 3.60037820681019830543435603488, 4.72423558051504695274317121298, 5.66310835727941098619585575156, 6.58759343164760590824341573690, 7.82212412482357628655027254615, 8.439489137236327858679655115808, 9.420478260920065726433394961507, 10.66549987268283273064356207248

Graph of the $Z$-function along the critical line