Properties

Label 2-5488-1.1-c1-0-139
Degree $2$
Conductor $5488$
Sign $-1$
Analytic cond. $43.8219$
Root an. cond. $6.61981$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.62·3-s − 0.341·5-s + 3.87·9-s − 1.63·11-s − 3.79·13-s − 0.895·15-s − 0.563·17-s + 0.326·19-s − 6.42·23-s − 4.88·25-s + 2.30·27-s − 2.13·29-s − 2.42·31-s − 4.28·33-s + 9.94·37-s − 9.95·39-s − 7.60·41-s + 3.48·43-s − 1.32·45-s − 7.79·47-s − 1.47·51-s − 7.82·53-s + 0.558·55-s + 0.857·57-s − 1.63·59-s + 0.163·61-s + 1.29·65-s + ⋯
L(s)  = 1  + 1.51·3-s − 0.152·5-s + 1.29·9-s − 0.492·11-s − 1.05·13-s − 0.231·15-s − 0.136·17-s + 0.0750·19-s − 1.33·23-s − 0.976·25-s + 0.443·27-s − 0.396·29-s − 0.436·31-s − 0.746·33-s + 1.63·37-s − 1.59·39-s − 1.18·41-s + 0.532·43-s − 0.197·45-s − 1.13·47-s − 0.206·51-s − 1.07·53-s + 0.0752·55-s + 0.113·57-s − 0.213·59-s + 0.0209·61-s + 0.160·65-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 5488 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5488 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(5488\)    =    \(2^{4} \cdot 7^{3}\)
Sign: $-1$
Analytic conductor: \(43.8219\)
Root analytic conductor: \(6.61981\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 5488,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
7 \( 1 \)
good3 \( 1 - 2.62T + 3T^{2} \)
5 \( 1 + 0.341T + 5T^{2} \)
11 \( 1 + 1.63T + 11T^{2} \)
13 \( 1 + 3.79T + 13T^{2} \)
17 \( 1 + 0.563T + 17T^{2} \)
19 \( 1 - 0.326T + 19T^{2} \)
23 \( 1 + 6.42T + 23T^{2} \)
29 \( 1 + 2.13T + 29T^{2} \)
31 \( 1 + 2.42T + 31T^{2} \)
37 \( 1 - 9.94T + 37T^{2} \)
41 \( 1 + 7.60T + 41T^{2} \)
43 \( 1 - 3.48T + 43T^{2} \)
47 \( 1 + 7.79T + 47T^{2} \)
53 \( 1 + 7.82T + 53T^{2} \)
59 \( 1 + 1.63T + 59T^{2} \)
61 \( 1 - 0.163T + 61T^{2} \)
67 \( 1 + 5.08T + 67T^{2} \)
71 \( 1 - 2.80T + 71T^{2} \)
73 \( 1 - 12.8T + 73T^{2} \)
79 \( 1 + 15.8T + 79T^{2} \)
83 \( 1 - 11.6T + 83T^{2} \)
89 \( 1 + 10.6T + 89T^{2} \)
97 \( 1 - 5.19T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.81202156912240643808911259013, −7.51107021221269965842462798982, −6.50875658958939891042308594860, −5.61466605155258136336429233612, −4.66575397018139077072260227591, −3.95007556088843293703668703560, −3.17977535441913716378030700514, −2.39461415429406691070448001000, −1.77188605288945043445793576907, 0, 1.77188605288945043445793576907, 2.39461415429406691070448001000, 3.17977535441913716378030700514, 3.95007556088843293703668703560, 4.66575397018139077072260227591, 5.61466605155258136336429233612, 6.50875658958939891042308594860, 7.51107021221269965842462798982, 7.81202156912240643808911259013

Graph of the $Z$-function along the critical line