Properties

Label 5488.2.a.s.1.9
Level $5488$
Weight $2$
Character 5488.1
Self dual yes
Analytic conductor $43.822$
Analytic rank $1$
Dimension $9$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [5488,2,Mod(1,5488)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("5488.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(5488, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 5488 = 2^{4} \cdot 7^{3} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5488.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [9,0,0,0,-13,0,0,0,13,0,-3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(43.8219006293\)
Analytic rank: \(1\)
Dimension: \(9\)
Coefficient field: \(\mathbb{Q}[x]/(x^{9} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{9} - 20x^{7} + 131x^{5} - 14x^{4} - 302x^{3} + 91x^{2} + 133x - 7 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 2744)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.9
Root \(-2.62260\) of defining polynomial
Character \(\chi\) \(=\) 5488.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.62260 q^{3} -0.341478 q^{5} +3.87801 q^{9} -1.63427 q^{11} -3.79546 q^{13} -0.895559 q^{15} -0.563514 q^{17} +0.326924 q^{19} -6.42051 q^{23} -4.88339 q^{25} +2.30266 q^{27} -2.13340 q^{29} -2.42777 q^{31} -4.28602 q^{33} +9.94934 q^{37} -9.95396 q^{39} -7.60309 q^{41} +3.48964 q^{43} -1.32425 q^{45} -7.79238 q^{47} -1.47787 q^{51} -7.82985 q^{53} +0.558066 q^{55} +0.857388 q^{57} -1.63759 q^{59} +0.163812 q^{61} +1.29607 q^{65} -5.08098 q^{67} -16.8384 q^{69} +2.80377 q^{71} +12.8241 q^{73} -12.8072 q^{75} -15.8939 q^{79} -5.59509 q^{81} +11.6355 q^{83} +0.192428 q^{85} -5.59505 q^{87} -10.6215 q^{89} -6.36706 q^{93} -0.111637 q^{95} +5.19230 q^{97} -6.33770 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 9 q - 13 q^{5} + 13 q^{9} - 3 q^{11} - 20 q^{13} - 3 q^{15} - 10 q^{17} + 10 q^{19} + 4 q^{23} + 22 q^{25} + 3 q^{29} + 10 q^{31} - 7 q^{33} + 6 q^{37} + 20 q^{39} - 13 q^{41} + 8 q^{43} - 52 q^{45} - 10 q^{47}+ \cdots + 14 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 2.62260 1.51416 0.757078 0.653324i \(-0.226626\pi\)
0.757078 + 0.653324i \(0.226626\pi\)
\(4\) 0 0
\(5\) −0.341478 −0.152714 −0.0763568 0.997081i \(-0.524329\pi\)
−0.0763568 + 0.997081i \(0.524329\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) 3.87801 1.29267
\(10\) 0 0
\(11\) −1.63427 −0.492750 −0.246375 0.969175i \(-0.579239\pi\)
−0.246375 + 0.969175i \(0.579239\pi\)
\(12\) 0 0
\(13\) −3.79546 −1.05267 −0.526336 0.850277i \(-0.676434\pi\)
−0.526336 + 0.850277i \(0.676434\pi\)
\(14\) 0 0
\(15\) −0.895559 −0.231232
\(16\) 0 0
\(17\) −0.563514 −0.136672 −0.0683362 0.997662i \(-0.521769\pi\)
−0.0683362 + 0.997662i \(0.521769\pi\)
\(18\) 0 0
\(19\) 0.326924 0.0750014 0.0375007 0.999297i \(-0.488060\pi\)
0.0375007 + 0.999297i \(0.488060\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −6.42051 −1.33877 −0.669384 0.742917i \(-0.733442\pi\)
−0.669384 + 0.742917i \(0.733442\pi\)
\(24\) 0 0
\(25\) −4.88339 −0.976679
\(26\) 0 0
\(27\) 2.30266 0.443146
\(28\) 0 0
\(29\) −2.13340 −0.396163 −0.198082 0.980186i \(-0.563471\pi\)
−0.198082 + 0.980186i \(0.563471\pi\)
\(30\) 0 0
\(31\) −2.42777 −0.436040 −0.218020 0.975944i \(-0.569960\pi\)
−0.218020 + 0.975944i \(0.569960\pi\)
\(32\) 0 0
\(33\) −4.28602 −0.746101
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 9.94934 1.63566 0.817831 0.575459i \(-0.195176\pi\)
0.817831 + 0.575459i \(0.195176\pi\)
\(38\) 0 0
\(39\) −9.95396 −1.59391
\(40\) 0 0
\(41\) −7.60309 −1.18740 −0.593701 0.804685i \(-0.702334\pi\)
−0.593701 + 0.804685i \(0.702334\pi\)
\(42\) 0 0
\(43\) 3.48964 0.532165 0.266083 0.963950i \(-0.414271\pi\)
0.266083 + 0.963950i \(0.414271\pi\)
\(44\) 0 0
\(45\) −1.32425 −0.197408
\(46\) 0 0
\(47\) −7.79238 −1.13664 −0.568318 0.822809i \(-0.692406\pi\)
−0.568318 + 0.822809i \(0.692406\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) −1.47787 −0.206943
\(52\) 0 0
\(53\) −7.82985 −1.07551 −0.537756 0.843100i \(-0.680728\pi\)
−0.537756 + 0.843100i \(0.680728\pi\)
\(54\) 0 0
\(55\) 0.558066 0.0752497
\(56\) 0 0
\(57\) 0.857388 0.113564
\(58\) 0 0
\(59\) −1.63759 −0.213196 −0.106598 0.994302i \(-0.533996\pi\)
−0.106598 + 0.994302i \(0.533996\pi\)
\(60\) 0 0
\(61\) 0.163812 0.0209740 0.0104870 0.999945i \(-0.496662\pi\)
0.0104870 + 0.999945i \(0.496662\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 1.29607 0.160757
\(66\) 0 0
\(67\) −5.08098 −0.620740 −0.310370 0.950616i \(-0.600453\pi\)
−0.310370 + 0.950616i \(0.600453\pi\)
\(68\) 0 0
\(69\) −16.8384 −2.02710
\(70\) 0 0
\(71\) 2.80377 0.332746 0.166373 0.986063i \(-0.446794\pi\)
0.166373 + 0.986063i \(0.446794\pi\)
\(72\) 0 0
\(73\) 12.8241 1.50095 0.750474 0.660900i \(-0.229825\pi\)
0.750474 + 0.660900i \(0.229825\pi\)
\(74\) 0 0
\(75\) −12.8072 −1.47884
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −15.8939 −1.78821 −0.894104 0.447859i \(-0.852187\pi\)
−0.894104 + 0.447859i \(0.852187\pi\)
\(80\) 0 0
\(81\) −5.59509 −0.621676
\(82\) 0 0
\(83\) 11.6355 1.27716 0.638578 0.769557i \(-0.279523\pi\)
0.638578 + 0.769557i \(0.279523\pi\)
\(84\) 0 0
\(85\) 0.192428 0.0208717
\(86\) 0 0
\(87\) −5.59505 −0.599853
\(88\) 0 0
\(89\) −10.6215 −1.12588 −0.562941 0.826497i \(-0.690330\pi\)
−0.562941 + 0.826497i \(0.690330\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) −6.36706 −0.660233
\(94\) 0 0
\(95\) −0.111637 −0.0114537
\(96\) 0 0
\(97\) 5.19230 0.527198 0.263599 0.964632i \(-0.415090\pi\)
0.263599 + 0.964632i \(0.415090\pi\)
\(98\) 0 0
\(99\) −6.33770 −0.636963
\(100\) 0 0
\(101\) −13.6974 −1.36294 −0.681469 0.731847i \(-0.738659\pi\)
−0.681469 + 0.731847i \(0.738659\pi\)
\(102\) 0 0
\(103\) 12.9172 1.27277 0.636384 0.771372i \(-0.280429\pi\)
0.636384 + 0.771372i \(0.280429\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 12.0664 1.16650 0.583251 0.812292i \(-0.301780\pi\)
0.583251 + 0.812292i \(0.301780\pi\)
\(108\) 0 0
\(109\) −11.6489 −1.11577 −0.557883 0.829919i \(-0.688386\pi\)
−0.557883 + 0.829919i \(0.688386\pi\)
\(110\) 0 0
\(111\) 26.0931 2.47665
\(112\) 0 0
\(113\) 14.7037 1.38321 0.691606 0.722275i \(-0.256903\pi\)
0.691606 + 0.722275i \(0.256903\pi\)
\(114\) 0 0
\(115\) 2.19246 0.204448
\(116\) 0 0
\(117\) −14.7188 −1.36076
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −8.32917 −0.757197
\(122\) 0 0
\(123\) −19.9398 −1.79791
\(124\) 0 0
\(125\) 3.37496 0.301866
\(126\) 0 0
\(127\) −3.73654 −0.331564 −0.165782 0.986162i \(-0.553015\pi\)
−0.165782 + 0.986162i \(0.553015\pi\)
\(128\) 0 0
\(129\) 9.15192 0.805782
\(130\) 0 0
\(131\) −15.3307 −1.33945 −0.669726 0.742609i \(-0.733588\pi\)
−0.669726 + 0.742609i \(0.733588\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) −0.786306 −0.0676745
\(136\) 0 0
\(137\) 0.632289 0.0540201 0.0270100 0.999635i \(-0.491401\pi\)
0.0270100 + 0.999635i \(0.491401\pi\)
\(138\) 0 0
\(139\) 13.8616 1.17573 0.587864 0.808960i \(-0.299969\pi\)
0.587864 + 0.808960i \(0.299969\pi\)
\(140\) 0 0
\(141\) −20.4363 −1.72104
\(142\) 0 0
\(143\) 6.20280 0.518704
\(144\) 0 0
\(145\) 0.728510 0.0604995
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −13.8516 −1.13477 −0.567383 0.823454i \(-0.692044\pi\)
−0.567383 + 0.823454i \(0.692044\pi\)
\(150\) 0 0
\(151\) 7.90823 0.643563 0.321781 0.946814i \(-0.395718\pi\)
0.321781 + 0.946814i \(0.395718\pi\)
\(152\) 0 0
\(153\) −2.18531 −0.176672
\(154\) 0 0
\(155\) 0.829030 0.0665893
\(156\) 0 0
\(157\) −20.9292 −1.67033 −0.835167 0.549997i \(-0.814629\pi\)
−0.835167 + 0.549997i \(0.814629\pi\)
\(158\) 0 0
\(159\) −20.5345 −1.62849
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 23.4873 1.83967 0.919833 0.392311i \(-0.128324\pi\)
0.919833 + 0.392311i \(0.128324\pi\)
\(164\) 0 0
\(165\) 1.46358 0.113940
\(166\) 0 0
\(167\) 4.18701 0.324001 0.162000 0.986791i \(-0.448205\pi\)
0.162000 + 0.986791i \(0.448205\pi\)
\(168\) 0 0
\(169\) 1.40552 0.108117
\(170\) 0 0
\(171\) 1.26781 0.0969520
\(172\) 0 0
\(173\) −4.47873 −0.340511 −0.170256 0.985400i \(-0.554459\pi\)
−0.170256 + 0.985400i \(0.554459\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −4.29474 −0.322812
\(178\) 0 0
\(179\) 19.3482 1.44616 0.723078 0.690767i \(-0.242727\pi\)
0.723078 + 0.690767i \(0.242727\pi\)
\(180\) 0 0
\(181\) −8.72039 −0.648182 −0.324091 0.946026i \(-0.605058\pi\)
−0.324091 + 0.946026i \(0.605058\pi\)
\(182\) 0 0
\(183\) 0.429613 0.0317579
\(184\) 0 0
\(185\) −3.39748 −0.249788
\(186\) 0 0
\(187\) 0.920933 0.0673453
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 5.25043 0.379908 0.189954 0.981793i \(-0.439166\pi\)
0.189954 + 0.981793i \(0.439166\pi\)
\(192\) 0 0
\(193\) −5.16764 −0.371975 −0.185988 0.982552i \(-0.559548\pi\)
−0.185988 + 0.982552i \(0.559548\pi\)
\(194\) 0 0
\(195\) 3.39906 0.243412
\(196\) 0 0
\(197\) 10.4092 0.741624 0.370812 0.928708i \(-0.379079\pi\)
0.370812 + 0.928708i \(0.379079\pi\)
\(198\) 0 0
\(199\) 17.6447 1.25080 0.625400 0.780304i \(-0.284936\pi\)
0.625400 + 0.780304i \(0.284936\pi\)
\(200\) 0 0
\(201\) −13.3253 −0.939897
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 2.59629 0.181333
\(206\) 0 0
\(207\) −24.8988 −1.73058
\(208\) 0 0
\(209\) −0.534280 −0.0369569
\(210\) 0 0
\(211\) 13.0253 0.896698 0.448349 0.893859i \(-0.352012\pi\)
0.448349 + 0.893859i \(0.352012\pi\)
\(212\) 0 0
\(213\) 7.35315 0.503830
\(214\) 0 0
\(215\) −1.19164 −0.0812689
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 33.6324 2.27267
\(220\) 0 0
\(221\) 2.13880 0.143871
\(222\) 0 0
\(223\) −8.95096 −0.599401 −0.299700 0.954033i \(-0.596887\pi\)
−0.299700 + 0.954033i \(0.596887\pi\)
\(224\) 0 0
\(225\) −18.9378 −1.26252
\(226\) 0 0
\(227\) −15.5647 −1.03307 −0.516533 0.856267i \(-0.672778\pi\)
−0.516533 + 0.856267i \(0.672778\pi\)
\(228\) 0 0
\(229\) −28.5098 −1.88398 −0.941991 0.335639i \(-0.891048\pi\)
−0.941991 + 0.335639i \(0.891048\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 1.30414 0.0854372 0.0427186 0.999087i \(-0.486398\pi\)
0.0427186 + 0.999087i \(0.486398\pi\)
\(234\) 0 0
\(235\) 2.66093 0.173580
\(236\) 0 0
\(237\) −41.6834 −2.70763
\(238\) 0 0
\(239\) 8.22806 0.532229 0.266114 0.963941i \(-0.414260\pi\)
0.266114 + 0.963941i \(0.414260\pi\)
\(240\) 0 0
\(241\) 3.43859 0.221499 0.110750 0.993848i \(-0.464675\pi\)
0.110750 + 0.993848i \(0.464675\pi\)
\(242\) 0 0
\(243\) −21.5816 −1.38446
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −1.24083 −0.0789518
\(248\) 0 0
\(249\) 30.5151 1.93381
\(250\) 0 0
\(251\) −17.8262 −1.12518 −0.562588 0.826737i \(-0.690194\pi\)
−0.562588 + 0.826737i \(0.690194\pi\)
\(252\) 0 0
\(253\) 10.4928 0.659678
\(254\) 0 0
\(255\) 0.504660 0.0316030
\(256\) 0 0
\(257\) 23.9218 1.49220 0.746099 0.665835i \(-0.231924\pi\)
0.746099 + 0.665835i \(0.231924\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) −8.27335 −0.512108
\(262\) 0 0
\(263\) 26.1350 1.61156 0.805778 0.592218i \(-0.201748\pi\)
0.805778 + 0.592218i \(0.201748\pi\)
\(264\) 0 0
\(265\) 2.67372 0.164245
\(266\) 0 0
\(267\) −27.8560 −1.70476
\(268\) 0 0
\(269\) 29.2146 1.78124 0.890622 0.454744i \(-0.150269\pi\)
0.890622 + 0.454744i \(0.150269\pi\)
\(270\) 0 0
\(271\) −17.2758 −1.04943 −0.524716 0.851277i \(-0.675829\pi\)
−0.524716 + 0.851277i \(0.675829\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 7.98077 0.481258
\(276\) 0 0
\(277\) −1.75070 −0.105189 −0.0525946 0.998616i \(-0.516749\pi\)
−0.0525946 + 0.998616i \(0.516749\pi\)
\(278\) 0 0
\(279\) −9.41491 −0.563656
\(280\) 0 0
\(281\) −21.6688 −1.29265 −0.646325 0.763062i \(-0.723695\pi\)
−0.646325 + 0.763062i \(0.723695\pi\)
\(282\) 0 0
\(283\) −25.8465 −1.53641 −0.768207 0.640201i \(-0.778851\pi\)
−0.768207 + 0.640201i \(0.778851\pi\)
\(284\) 0 0
\(285\) −0.292779 −0.0173427
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −16.6825 −0.981321
\(290\) 0 0
\(291\) 13.6173 0.798260
\(292\) 0 0
\(293\) 5.00644 0.292479 0.146240 0.989249i \(-0.453283\pi\)
0.146240 + 0.989249i \(0.453283\pi\)
\(294\) 0 0
\(295\) 0.559201 0.0325580
\(296\) 0 0
\(297\) −3.76315 −0.218360
\(298\) 0 0
\(299\) 24.3688 1.40928
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) −35.9226 −2.06370
\(304\) 0 0
\(305\) −0.0559382 −0.00320301
\(306\) 0 0
\(307\) 15.4740 0.883148 0.441574 0.897225i \(-0.354420\pi\)
0.441574 + 0.897225i \(0.354420\pi\)
\(308\) 0 0
\(309\) 33.8765 1.92717
\(310\) 0 0
\(311\) −13.4393 −0.762075 −0.381037 0.924560i \(-0.624433\pi\)
−0.381037 + 0.924560i \(0.624433\pi\)
\(312\) 0 0
\(313\) −29.6339 −1.67501 −0.837504 0.546431i \(-0.815986\pi\)
−0.837504 + 0.546431i \(0.815986\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 2.92997 0.164564 0.0822818 0.996609i \(-0.473779\pi\)
0.0822818 + 0.996609i \(0.473779\pi\)
\(318\) 0 0
\(319\) 3.48655 0.195209
\(320\) 0 0
\(321\) 31.6453 1.76627
\(322\) 0 0
\(323\) −0.184226 −0.0102506
\(324\) 0 0
\(325\) 18.5347 1.02812
\(326\) 0 0
\(327\) −30.5505 −1.68945
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 8.94913 0.491888 0.245944 0.969284i \(-0.420902\pi\)
0.245944 + 0.969284i \(0.420902\pi\)
\(332\) 0 0
\(333\) 38.5836 2.11437
\(334\) 0 0
\(335\) 1.73504 0.0947955
\(336\) 0 0
\(337\) 16.5302 0.900457 0.450228 0.892913i \(-0.351343\pi\)
0.450228 + 0.892913i \(0.351343\pi\)
\(338\) 0 0
\(339\) 38.5620 2.09440
\(340\) 0 0
\(341\) 3.96762 0.214859
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 5.74994 0.309566
\(346\) 0 0
\(347\) 4.43312 0.237982 0.118991 0.992895i \(-0.462034\pi\)
0.118991 + 0.992895i \(0.462034\pi\)
\(348\) 0 0
\(349\) −8.12723 −0.435041 −0.217520 0.976056i \(-0.569797\pi\)
−0.217520 + 0.976056i \(0.569797\pi\)
\(350\) 0 0
\(351\) −8.73964 −0.466487
\(352\) 0 0
\(353\) −27.6271 −1.47044 −0.735220 0.677828i \(-0.762921\pi\)
−0.735220 + 0.677828i \(0.762921\pi\)
\(354\) 0 0
\(355\) −0.957426 −0.0508149
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −37.3723 −1.97243 −0.986216 0.165463i \(-0.947088\pi\)
−0.986216 + 0.165463i \(0.947088\pi\)
\(360\) 0 0
\(361\) −18.8931 −0.994375
\(362\) 0 0
\(363\) −21.8440 −1.14651
\(364\) 0 0
\(365\) −4.37915 −0.229215
\(366\) 0 0
\(367\) 13.4219 0.700619 0.350310 0.936634i \(-0.386076\pi\)
0.350310 + 0.936634i \(0.386076\pi\)
\(368\) 0 0
\(369\) −29.4848 −1.53492
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 4.18853 0.216874 0.108437 0.994103i \(-0.465415\pi\)
0.108437 + 0.994103i \(0.465415\pi\)
\(374\) 0 0
\(375\) 8.85116 0.457072
\(376\) 0 0
\(377\) 8.09725 0.417029
\(378\) 0 0
\(379\) 23.8997 1.22765 0.613824 0.789443i \(-0.289631\pi\)
0.613824 + 0.789443i \(0.289631\pi\)
\(380\) 0 0
\(381\) −9.79944 −0.502040
\(382\) 0 0
\(383\) −13.5860 −0.694211 −0.347106 0.937826i \(-0.612835\pi\)
−0.347106 + 0.937826i \(0.612835\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 13.5329 0.687914
\(388\) 0 0
\(389\) 7.35797 0.373064 0.186532 0.982449i \(-0.440275\pi\)
0.186532 + 0.982449i \(0.440275\pi\)
\(390\) 0 0
\(391\) 3.61805 0.182973
\(392\) 0 0
\(393\) −40.2063 −2.02814
\(394\) 0 0
\(395\) 5.42743 0.273084
\(396\) 0 0
\(397\) −6.00128 −0.301196 −0.150598 0.988595i \(-0.548120\pi\)
−0.150598 + 0.988595i \(0.548120\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 32.3935 1.61766 0.808828 0.588045i \(-0.200102\pi\)
0.808828 + 0.588045i \(0.200102\pi\)
\(402\) 0 0
\(403\) 9.21450 0.459007
\(404\) 0 0
\(405\) 1.91060 0.0949384
\(406\) 0 0
\(407\) −16.2599 −0.805972
\(408\) 0 0
\(409\) −2.80630 −0.138763 −0.0693813 0.997590i \(-0.522103\pi\)
−0.0693813 + 0.997590i \(0.522103\pi\)
\(410\) 0 0
\(411\) 1.65824 0.0817948
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) −3.97325 −0.195039
\(416\) 0 0
\(417\) 36.3534 1.78023
\(418\) 0 0
\(419\) −27.9948 −1.36764 −0.683818 0.729653i \(-0.739682\pi\)
−0.683818 + 0.729653i \(0.739682\pi\)
\(420\) 0 0
\(421\) −11.0697 −0.539504 −0.269752 0.962930i \(-0.586942\pi\)
−0.269752 + 0.962930i \(0.586942\pi\)
\(422\) 0 0
\(423\) −30.2189 −1.46929
\(424\) 0 0
\(425\) 2.75186 0.133485
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 16.2674 0.785399
\(430\) 0 0
\(431\) 17.0623 0.821861 0.410931 0.911667i \(-0.365204\pi\)
0.410931 + 0.911667i \(0.365204\pi\)
\(432\) 0 0
\(433\) 20.0310 0.962629 0.481315 0.876548i \(-0.340159\pi\)
0.481315 + 0.876548i \(0.340159\pi\)
\(434\) 0 0
\(435\) 1.91059 0.0916057
\(436\) 0 0
\(437\) −2.09901 −0.100409
\(438\) 0 0
\(439\) 27.7079 1.32242 0.661212 0.750199i \(-0.270042\pi\)
0.661212 + 0.750199i \(0.270042\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −10.1876 −0.484027 −0.242013 0.970273i \(-0.577808\pi\)
−0.242013 + 0.970273i \(0.577808\pi\)
\(444\) 0 0
\(445\) 3.62703 0.171938
\(446\) 0 0
\(447\) −36.3271 −1.71821
\(448\) 0 0
\(449\) 37.2385 1.75740 0.878698 0.477379i \(-0.158413\pi\)
0.878698 + 0.477379i \(0.158413\pi\)
\(450\) 0 0
\(451\) 12.4255 0.585093
\(452\) 0 0
\(453\) 20.7401 0.974455
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 4.82527 0.225716 0.112858 0.993611i \(-0.463999\pi\)
0.112858 + 0.993611i \(0.463999\pi\)
\(458\) 0 0
\(459\) −1.29758 −0.0605658
\(460\) 0 0
\(461\) −25.9002 −1.20629 −0.603146 0.797631i \(-0.706086\pi\)
−0.603146 + 0.797631i \(0.706086\pi\)
\(462\) 0 0
\(463\) 9.30833 0.432595 0.216297 0.976328i \(-0.430602\pi\)
0.216297 + 0.976328i \(0.430602\pi\)
\(464\) 0 0
\(465\) 2.17421 0.100827
\(466\) 0 0
\(467\) −39.2149 −1.81465 −0.907324 0.420432i \(-0.861879\pi\)
−0.907324 + 0.420432i \(0.861879\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) −54.8889 −2.52915
\(472\) 0 0
\(473\) −5.70301 −0.262225
\(474\) 0 0
\(475\) −1.59650 −0.0732523
\(476\) 0 0
\(477\) −30.3642 −1.39028
\(478\) 0 0
\(479\) −5.97179 −0.272858 −0.136429 0.990650i \(-0.543563\pi\)
−0.136429 + 0.990650i \(0.543563\pi\)
\(480\) 0 0
\(481\) −37.7623 −1.72181
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −1.77306 −0.0805103
\(486\) 0 0
\(487\) 42.3336 1.91832 0.959160 0.282864i \(-0.0912846\pi\)
0.959160 + 0.282864i \(0.0912846\pi\)
\(488\) 0 0
\(489\) 61.5976 2.78554
\(490\) 0 0
\(491\) 29.7412 1.34220 0.671102 0.741365i \(-0.265821\pi\)
0.671102 + 0.741365i \(0.265821\pi\)
\(492\) 0 0
\(493\) 1.20220 0.0541445
\(494\) 0 0
\(495\) 2.16418 0.0972729
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) −13.2096 −0.591341 −0.295670 0.955290i \(-0.595543\pi\)
−0.295670 + 0.955290i \(0.595543\pi\)
\(500\) 0 0
\(501\) 10.9808 0.490587
\(502\) 0 0
\(503\) 8.41289 0.375112 0.187556 0.982254i \(-0.439943\pi\)
0.187556 + 0.982254i \(0.439943\pi\)
\(504\) 0 0
\(505\) 4.67735 0.208139
\(506\) 0 0
\(507\) 3.68611 0.163706
\(508\) 0 0
\(509\) 4.22347 0.187202 0.0936009 0.995610i \(-0.470162\pi\)
0.0936009 + 0.995610i \(0.470162\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 0.752792 0.0332366
\(514\) 0 0
\(515\) −4.41093 −0.194369
\(516\) 0 0
\(517\) 12.7348 0.560077
\(518\) 0 0
\(519\) −11.7459 −0.515587
\(520\) 0 0
\(521\) −38.7713 −1.69860 −0.849300 0.527910i \(-0.822976\pi\)
−0.849300 + 0.527910i \(0.822976\pi\)
\(522\) 0 0
\(523\) 17.4755 0.764151 0.382075 0.924131i \(-0.375210\pi\)
0.382075 + 0.924131i \(0.375210\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 1.36808 0.0595946
\(528\) 0 0
\(529\) 18.2229 0.792300
\(530\) 0 0
\(531\) −6.35059 −0.275592
\(532\) 0 0
\(533\) 28.8572 1.24995
\(534\) 0 0
\(535\) −4.12041 −0.178141
\(536\) 0 0
\(537\) 50.7426 2.18971
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 13.6449 0.586640 0.293320 0.956014i \(-0.405240\pi\)
0.293320 + 0.956014i \(0.405240\pi\)
\(542\) 0 0
\(543\) −22.8701 −0.981448
\(544\) 0 0
\(545\) 3.97786 0.170393
\(546\) 0 0
\(547\) −34.6289 −1.48062 −0.740312 0.672264i \(-0.765322\pi\)
−0.740312 + 0.672264i \(0.765322\pi\)
\(548\) 0 0
\(549\) 0.635264 0.0271124
\(550\) 0 0
\(551\) −0.697460 −0.0297128
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) −8.91022 −0.378218
\(556\) 0 0
\(557\) −30.4501 −1.29021 −0.645107 0.764092i \(-0.723187\pi\)
−0.645107 + 0.764092i \(0.723187\pi\)
\(558\) 0 0
\(559\) −13.2448 −0.560195
\(560\) 0 0
\(561\) 2.41523 0.101971
\(562\) 0 0
\(563\) −16.1062 −0.678794 −0.339397 0.940643i \(-0.610223\pi\)
−0.339397 + 0.940643i \(0.610223\pi\)
\(564\) 0 0
\(565\) −5.02101 −0.211235
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 2.85811 0.119818 0.0599092 0.998204i \(-0.480919\pi\)
0.0599092 + 0.998204i \(0.480919\pi\)
\(570\) 0 0
\(571\) 22.3920 0.937076 0.468538 0.883443i \(-0.344781\pi\)
0.468538 + 0.883443i \(0.344781\pi\)
\(572\) 0 0
\(573\) 13.7698 0.575240
\(574\) 0 0
\(575\) 31.3539 1.30755
\(576\) 0 0
\(577\) −7.90066 −0.328909 −0.164454 0.986385i \(-0.552586\pi\)
−0.164454 + 0.986385i \(0.552586\pi\)
\(578\) 0 0
\(579\) −13.5526 −0.563228
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 12.7961 0.529959
\(584\) 0 0
\(585\) 5.02615 0.207806
\(586\) 0 0
\(587\) 13.2704 0.547730 0.273865 0.961768i \(-0.411698\pi\)
0.273865 + 0.961768i \(0.411698\pi\)
\(588\) 0 0
\(589\) −0.793695 −0.0327036
\(590\) 0 0
\(591\) 27.2991 1.12293
\(592\) 0 0
\(593\) 10.8623 0.446060 0.223030 0.974812i \(-0.428405\pi\)
0.223030 + 0.974812i \(0.428405\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 46.2750 1.89391
\(598\) 0 0
\(599\) −16.3445 −0.667819 −0.333909 0.942605i \(-0.608368\pi\)
−0.333909 + 0.942605i \(0.608368\pi\)
\(600\) 0 0
\(601\) 45.3426 1.84956 0.924781 0.380500i \(-0.124248\pi\)
0.924781 + 0.380500i \(0.124248\pi\)
\(602\) 0 0
\(603\) −19.7041 −0.802411
\(604\) 0 0
\(605\) 2.84423 0.115634
\(606\) 0 0
\(607\) 7.92339 0.321601 0.160800 0.986987i \(-0.448592\pi\)
0.160800 + 0.986987i \(0.448592\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 29.5757 1.19650
\(612\) 0 0
\(613\) 13.3520 0.539284 0.269642 0.962961i \(-0.413095\pi\)
0.269642 + 0.962961i \(0.413095\pi\)
\(614\) 0 0
\(615\) 6.80901 0.274566
\(616\) 0 0
\(617\) −6.50284 −0.261794 −0.130897 0.991396i \(-0.541786\pi\)
−0.130897 + 0.991396i \(0.541786\pi\)
\(618\) 0 0
\(619\) 5.91993 0.237942 0.118971 0.992898i \(-0.462040\pi\)
0.118971 + 0.992898i \(0.462040\pi\)
\(620\) 0 0
\(621\) −14.7842 −0.593270
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 23.2645 0.930580
\(626\) 0 0
\(627\) −1.40120 −0.0559586
\(628\) 0 0
\(629\) −5.60660 −0.223550
\(630\) 0 0
\(631\) 44.2970 1.76344 0.881718 0.471777i \(-0.156387\pi\)
0.881718 + 0.471777i \(0.156387\pi\)
\(632\) 0 0
\(633\) 34.1601 1.35774
\(634\) 0 0
\(635\) 1.27595 0.0506344
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 10.8730 0.430131
\(640\) 0 0
\(641\) −8.62706 −0.340748 −0.170374 0.985379i \(-0.554498\pi\)
−0.170374 + 0.985379i \(0.554498\pi\)
\(642\) 0 0
\(643\) −28.5734 −1.12683 −0.563413 0.826175i \(-0.690512\pi\)
−0.563413 + 0.826175i \(0.690512\pi\)
\(644\) 0 0
\(645\) −3.12518 −0.123054
\(646\) 0 0
\(647\) −31.5065 −1.23865 −0.619324 0.785136i \(-0.712593\pi\)
−0.619324 + 0.785136i \(0.712593\pi\)
\(648\) 0 0
\(649\) 2.67626 0.105052
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −34.4150 −1.34676 −0.673381 0.739296i \(-0.735159\pi\)
−0.673381 + 0.739296i \(0.735159\pi\)
\(654\) 0 0
\(655\) 5.23510 0.204552
\(656\) 0 0
\(657\) 49.7320 1.94023
\(658\) 0 0
\(659\) −13.7941 −0.537343 −0.268672 0.963232i \(-0.586585\pi\)
−0.268672 + 0.963232i \(0.586585\pi\)
\(660\) 0 0
\(661\) 34.0803 1.32557 0.662785 0.748810i \(-0.269374\pi\)
0.662785 + 0.748810i \(0.269374\pi\)
\(662\) 0 0
\(663\) 5.60920 0.217843
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 13.6975 0.530370
\(668\) 0 0
\(669\) −23.4748 −0.907586
\(670\) 0 0
\(671\) −0.267713 −0.0103349
\(672\) 0 0
\(673\) 30.1088 1.16061 0.580305 0.814399i \(-0.302933\pi\)
0.580305 + 0.814399i \(0.302933\pi\)
\(674\) 0 0
\(675\) −11.2448 −0.432811
\(676\) 0 0
\(677\) −0.297193 −0.0114221 −0.00571103 0.999984i \(-0.501818\pi\)
−0.00571103 + 0.999984i \(0.501818\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) −40.8200 −1.56422
\(682\) 0 0
\(683\) 9.07142 0.347108 0.173554 0.984824i \(-0.444475\pi\)
0.173554 + 0.984824i \(0.444475\pi\)
\(684\) 0 0
\(685\) −0.215913 −0.00824960
\(686\) 0 0
\(687\) −74.7697 −2.85264
\(688\) 0 0
\(689\) 29.7179 1.13216
\(690\) 0 0
\(691\) 27.8498 1.05946 0.529729 0.848167i \(-0.322294\pi\)
0.529729 + 0.848167i \(0.322294\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −4.73344 −0.179550
\(696\) 0 0
\(697\) 4.28445 0.162285
\(698\) 0 0
\(699\) 3.42024 0.129365
\(700\) 0 0
\(701\) −12.9467 −0.488989 −0.244494 0.969651i \(-0.578622\pi\)
−0.244494 + 0.969651i \(0.578622\pi\)
\(702\) 0 0
\(703\) 3.25267 0.122677
\(704\) 0 0
\(705\) 6.97853 0.262827
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −18.2567 −0.685644 −0.342822 0.939400i \(-0.611383\pi\)
−0.342822 + 0.939400i \(0.611383\pi\)
\(710\) 0 0
\(711\) −61.6368 −2.31156
\(712\) 0 0
\(713\) 15.5875 0.583757
\(714\) 0 0
\(715\) −2.11812 −0.0792132
\(716\) 0 0
\(717\) 21.5789 0.805877
\(718\) 0 0
\(719\) −11.1446 −0.415623 −0.207811 0.978169i \(-0.566634\pi\)
−0.207811 + 0.978169i \(0.566634\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 9.01804 0.335385
\(724\) 0 0
\(725\) 10.4182 0.386924
\(726\) 0 0
\(727\) −47.3726 −1.75695 −0.878476 0.477786i \(-0.841439\pi\)
−0.878476 + 0.477786i \(0.841439\pi\)
\(728\) 0 0
\(729\) −39.8146 −1.47461
\(730\) 0 0
\(731\) −1.96646 −0.0727323
\(732\) 0 0
\(733\) −30.0558 −1.11014 −0.555069 0.831805i \(-0.687308\pi\)
−0.555069 + 0.831805i \(0.687308\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 8.30367 0.305870
\(738\) 0 0
\(739\) −19.2090 −0.706614 −0.353307 0.935507i \(-0.614943\pi\)
−0.353307 + 0.935507i \(0.614943\pi\)
\(740\) 0 0
\(741\) −3.25418 −0.119545
\(742\) 0 0
\(743\) 5.71688 0.209732 0.104866 0.994486i \(-0.466559\pi\)
0.104866 + 0.994486i \(0.466559\pi\)
\(744\) 0 0
\(745\) 4.73001 0.173294
\(746\) 0 0
\(747\) 45.1224 1.65094
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 7.12152 0.259868 0.129934 0.991523i \(-0.458523\pi\)
0.129934 + 0.991523i \(0.458523\pi\)
\(752\) 0 0
\(753\) −46.7508 −1.70369
\(754\) 0 0
\(755\) −2.70049 −0.0982808
\(756\) 0 0
\(757\) 40.3533 1.46667 0.733333 0.679870i \(-0.237964\pi\)
0.733333 + 0.679870i \(0.237964\pi\)
\(758\) 0 0
\(759\) 27.5184 0.998856
\(760\) 0 0
\(761\) 0.595020 0.0215695 0.0107847 0.999942i \(-0.496567\pi\)
0.0107847 + 0.999942i \(0.496567\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 0.746236 0.0269802
\(766\) 0 0
\(767\) 6.21541 0.224425
\(768\) 0 0
\(769\) −16.0044 −0.577133 −0.288566 0.957460i \(-0.593179\pi\)
−0.288566 + 0.957460i \(0.593179\pi\)
\(770\) 0 0
\(771\) 62.7371 2.25942
\(772\) 0 0
\(773\) −21.1336 −0.760124 −0.380062 0.924961i \(-0.624097\pi\)
−0.380062 + 0.924961i \(0.624097\pi\)
\(774\) 0 0
\(775\) 11.8558 0.425871
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −2.48563 −0.0890569
\(780\) 0 0
\(781\) −4.58211 −0.163961
\(782\) 0 0
\(783\) −4.91249 −0.175558
\(784\) 0 0
\(785\) 7.14687 0.255083
\(786\) 0 0
\(787\) 31.3184 1.11638 0.558190 0.829713i \(-0.311496\pi\)
0.558190 + 0.829713i \(0.311496\pi\)
\(788\) 0 0
\(789\) 68.5416 2.44015
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) −0.621742 −0.0220787
\(794\) 0 0
\(795\) 7.01209 0.248693
\(796\) 0 0
\(797\) −3.83229 −0.135747 −0.0678734 0.997694i \(-0.521621\pi\)
−0.0678734 + 0.997694i \(0.521621\pi\)
\(798\) 0 0
\(799\) 4.39112 0.155347
\(800\) 0 0
\(801\) −41.1904 −1.45539
\(802\) 0 0
\(803\) −20.9580 −0.739592
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 76.6180 2.69708
\(808\) 0 0
\(809\) −35.3464 −1.24271 −0.621356 0.783528i \(-0.713418\pi\)
−0.621356 + 0.783528i \(0.713418\pi\)
\(810\) 0 0
\(811\) 21.3577 0.749970 0.374985 0.927031i \(-0.377648\pi\)
0.374985 + 0.927031i \(0.377648\pi\)
\(812\) 0 0
\(813\) −45.3075 −1.58900
\(814\) 0 0
\(815\) −8.02039 −0.280942
\(816\) 0 0
\(817\) 1.14085 0.0399132
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −18.2335 −0.636354 −0.318177 0.948031i \(-0.603071\pi\)
−0.318177 + 0.948031i \(0.603071\pi\)
\(822\) 0 0
\(823\) −5.77735 −0.201386 −0.100693 0.994918i \(-0.532106\pi\)
−0.100693 + 0.994918i \(0.532106\pi\)
\(824\) 0 0
\(825\) 20.9303 0.728700
\(826\) 0 0
\(827\) 19.6592 0.683618 0.341809 0.939769i \(-0.388960\pi\)
0.341809 + 0.939769i \(0.388960\pi\)
\(828\) 0 0
\(829\) 7.81464 0.271414 0.135707 0.990749i \(-0.456669\pi\)
0.135707 + 0.990749i \(0.456669\pi\)
\(830\) 0 0
\(831\) −4.59137 −0.159273
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) −1.42977 −0.0494793
\(836\) 0 0
\(837\) −5.59032 −0.193230
\(838\) 0 0
\(839\) −12.8507 −0.443657 −0.221828 0.975086i \(-0.571202\pi\)
−0.221828 + 0.975086i \(0.571202\pi\)
\(840\) 0 0
\(841\) −24.4486 −0.843055
\(842\) 0 0
\(843\) −56.8284 −1.95727
\(844\) 0 0
\(845\) −0.479954 −0.0165109
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) −67.7849 −2.32637
\(850\) 0 0
\(851\) −63.8798 −2.18977
\(852\) 0 0
\(853\) −57.1224 −1.95583 −0.977917 0.208992i \(-0.932982\pi\)
−0.977917 + 0.208992i \(0.932982\pi\)
\(854\) 0 0
\(855\) −0.432930 −0.0148059
\(856\) 0 0
\(857\) −44.3906 −1.51635 −0.758176 0.652049i \(-0.773909\pi\)
−0.758176 + 0.652049i \(0.773909\pi\)
\(858\) 0 0
\(859\) 14.5395 0.496082 0.248041 0.968750i \(-0.420213\pi\)
0.248041 + 0.968750i \(0.420213\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −11.6137 −0.395334 −0.197667 0.980269i \(-0.563336\pi\)
−0.197667 + 0.980269i \(0.563336\pi\)
\(864\) 0 0
\(865\) 1.52939 0.0520007
\(866\) 0 0
\(867\) −43.7513 −1.48587
\(868\) 0 0
\(869\) 25.9749 0.881140
\(870\) 0 0
\(871\) 19.2846 0.653435
\(872\) 0 0
\(873\) 20.1358 0.681492
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −21.4186 −0.723253 −0.361627 0.932323i \(-0.617779\pi\)
−0.361627 + 0.932323i \(0.617779\pi\)
\(878\) 0 0
\(879\) 13.1299 0.442859
\(880\) 0 0
\(881\) 41.6340 1.40269 0.701343 0.712824i \(-0.252584\pi\)
0.701343 + 0.712824i \(0.252584\pi\)
\(882\) 0 0
\(883\) −11.7539 −0.395551 −0.197776 0.980247i \(-0.563372\pi\)
−0.197776 + 0.980247i \(0.563372\pi\)
\(884\) 0 0
\(885\) 1.46656 0.0492978
\(886\) 0 0
\(887\) 5.80095 0.194777 0.0973884 0.995246i \(-0.468951\pi\)
0.0973884 + 0.995246i \(0.468951\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 9.14387 0.306331
\(892\) 0 0
\(893\) −2.54751 −0.0852493
\(894\) 0 0
\(895\) −6.60700 −0.220848
\(896\) 0 0
\(897\) 63.9094 2.13387
\(898\) 0 0
\(899\) 5.17941 0.172743
\(900\) 0 0
\(901\) 4.41223 0.146993
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 2.97782 0.0989862
\(906\) 0 0
\(907\) −41.0318 −1.36244 −0.681220 0.732079i \(-0.738550\pi\)
−0.681220 + 0.732079i \(0.738550\pi\)
\(908\) 0 0
\(909\) −53.1185 −1.76183
\(910\) 0 0
\(911\) 35.2351 1.16739 0.583695 0.811973i \(-0.301606\pi\)
0.583695 + 0.811973i \(0.301606\pi\)
\(912\) 0 0
\(913\) −19.0154 −0.629319
\(914\) 0 0
\(915\) −0.146703 −0.00484986
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) −37.9117 −1.25059 −0.625296 0.780387i \(-0.715022\pi\)
−0.625296 + 0.780387i \(0.715022\pi\)
\(920\) 0 0
\(921\) 40.5820 1.33722
\(922\) 0 0
\(923\) −10.6416 −0.350272
\(924\) 0 0
\(925\) −48.5865 −1.59752
\(926\) 0 0
\(927\) 50.0929 1.64527
\(928\) 0 0
\(929\) 37.0891 1.21685 0.608426 0.793610i \(-0.291801\pi\)
0.608426 + 0.793610i \(0.291801\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) −35.2459 −1.15390
\(934\) 0 0
\(935\) −0.314478 −0.0102845
\(936\) 0 0
\(937\) −43.5333 −1.42217 −0.711085 0.703106i \(-0.751796\pi\)
−0.711085 + 0.703106i \(0.751796\pi\)
\(938\) 0 0
\(939\) −77.7178 −2.53622
\(940\) 0 0
\(941\) −36.3914 −1.18633 −0.593163 0.805082i \(-0.702121\pi\)
−0.593163 + 0.805082i \(0.702121\pi\)
\(942\) 0 0
\(943\) 48.8157 1.58966
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 4.08304 0.132681 0.0663405 0.997797i \(-0.478868\pi\)
0.0663405 + 0.997797i \(0.478868\pi\)
\(948\) 0 0
\(949\) −48.6734 −1.58000
\(950\) 0 0
\(951\) 7.68413 0.249175
\(952\) 0 0
\(953\) −1.25957 −0.0408013 −0.0204007 0.999792i \(-0.506494\pi\)
−0.0204007 + 0.999792i \(0.506494\pi\)
\(954\) 0 0
\(955\) −1.79291 −0.0580171
\(956\) 0 0
\(957\) 9.14381 0.295577
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −25.1059 −0.809869
\(962\) 0 0
\(963\) 46.7935 1.50790
\(964\) 0 0
\(965\) 1.76464 0.0568057
\(966\) 0 0
\(967\) −3.63836 −0.117002 −0.0585008 0.998287i \(-0.518632\pi\)
−0.0585008 + 0.998287i \(0.518632\pi\)
\(968\) 0 0
\(969\) −0.483150 −0.0155210
\(970\) 0 0
\(971\) −0.952377 −0.0305632 −0.0152816 0.999883i \(-0.504864\pi\)
−0.0152816 + 0.999883i \(0.504864\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 48.6091 1.55674
\(976\) 0 0
\(977\) −26.4969 −0.847711 −0.423855 0.905730i \(-0.639323\pi\)
−0.423855 + 0.905730i \(0.639323\pi\)
\(978\) 0 0
\(979\) 17.3584 0.554778
\(980\) 0 0
\(981\) −45.1747 −1.44232
\(982\) 0 0
\(983\) −56.3652 −1.79777 −0.898885 0.438184i \(-0.855622\pi\)
−0.898885 + 0.438184i \(0.855622\pi\)
\(984\) 0 0
\(985\) −3.55451 −0.113256
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −22.4053 −0.712446
\(990\) 0 0
\(991\) −16.1823 −0.514049 −0.257025 0.966405i \(-0.582742\pi\)
−0.257025 + 0.966405i \(0.582742\pi\)
\(992\) 0 0
\(993\) 23.4699 0.744796
\(994\) 0 0
\(995\) −6.02528 −0.191014
\(996\) 0 0
\(997\) 6.63773 0.210219 0.105109 0.994461i \(-0.466481\pi\)
0.105109 + 0.994461i \(0.466481\pi\)
\(998\) 0 0
\(999\) 22.9099 0.724837
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 5488.2.a.s.1.9 9
4.3 odd 2 2744.2.a.d.1.1 9
7.6 odd 2 5488.2.a.t.1.1 9
28.27 even 2 2744.2.a.e.1.9 yes 9
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2744.2.a.d.1.1 9 4.3 odd 2
2744.2.a.e.1.9 yes 9 28.27 even 2
5488.2.a.s.1.9 9 1.1 even 1 trivial
5488.2.a.t.1.1 9 7.6 odd 2