L(s) = 1 | + (−0.216 + 1.08i)5-s + (0.382 − 0.923i)9-s + (1.30 + 1.30i)13-s + (−0.707 + 0.707i)17-s + (−0.216 − 0.0897i)25-s + (−0.382 − 0.0761i)29-s + (−1.08 − 1.63i)37-s + (−0.382 − 1.92i)41-s + (0.923 + 0.617i)45-s + (0.923 − 0.382i)49-s + (−0.292 − 0.707i)53-s + (−1.63 + 0.324i)61-s + (−1.70 + 1.14i)65-s + (−0.0761 + 0.382i)73-s + (−0.707 − 0.707i)81-s + ⋯ |
L(s) = 1 | + (−0.216 + 1.08i)5-s + (0.382 − 0.923i)9-s + (1.30 + 1.30i)13-s + (−0.707 + 0.707i)17-s + (−0.216 − 0.0897i)25-s + (−0.382 − 0.0761i)29-s + (−1.08 − 1.63i)37-s + (−0.382 − 1.92i)41-s + (0.923 + 0.617i)45-s + (0.923 − 0.382i)49-s + (−0.292 − 0.707i)53-s + (−1.63 + 0.324i)61-s + (−1.70 + 1.14i)65-s + (−0.0761 + 0.382i)73-s + (−0.707 − 0.707i)81-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 544 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.813 - 0.581i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 544 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.813 - 0.581i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.9013605501\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.9013605501\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 17 | \( 1 + (0.707 - 0.707i)T \) |
good | 3 | \( 1 + (-0.382 + 0.923i)T^{2} \) |
| 5 | \( 1 + (0.216 - 1.08i)T + (-0.923 - 0.382i)T^{2} \) |
| 7 | \( 1 + (-0.923 + 0.382i)T^{2} \) |
| 11 | \( 1 + (0.382 + 0.923i)T^{2} \) |
| 13 | \( 1 + (-1.30 - 1.30i)T + iT^{2} \) |
| 19 | \( 1 + (-0.707 + 0.707i)T^{2} \) |
| 23 | \( 1 + (-0.382 - 0.923i)T^{2} \) |
| 29 | \( 1 + (0.382 + 0.0761i)T + (0.923 + 0.382i)T^{2} \) |
| 31 | \( 1 + (0.382 - 0.923i)T^{2} \) |
| 37 | \( 1 + (1.08 + 1.63i)T + (-0.382 + 0.923i)T^{2} \) |
| 41 | \( 1 + (0.382 + 1.92i)T + (-0.923 + 0.382i)T^{2} \) |
| 43 | \( 1 + (-0.707 - 0.707i)T^{2} \) |
| 47 | \( 1 + iT^{2} \) |
| 53 | \( 1 + (0.292 + 0.707i)T + (-0.707 + 0.707i)T^{2} \) |
| 59 | \( 1 + (0.707 + 0.707i)T^{2} \) |
| 61 | \( 1 + (1.63 - 0.324i)T + (0.923 - 0.382i)T^{2} \) |
| 67 | \( 1 - T^{2} \) |
| 71 | \( 1 + (-0.382 + 0.923i)T^{2} \) |
| 73 | \( 1 + (0.0761 - 0.382i)T + (-0.923 - 0.382i)T^{2} \) |
| 79 | \( 1 + (0.382 + 0.923i)T^{2} \) |
| 83 | \( 1 + (0.707 - 0.707i)T^{2} \) |
| 89 | \( 1 + (1.30 - 1.30i)T - iT^{2} \) |
| 97 | \( 1 + (-1.63 - 0.324i)T + (0.923 + 0.382i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.00054652638078806627534287014, −10.46682142078004686956244416056, −9.218390969785557518798186454966, −8.657286844241876680900412660539, −7.20510575885949919596270229869, −6.70088631359301043378855550314, −5.83844298349978782689363244746, −4.10520438691444965839565846077, −3.53372728561153302885629137637, −1.91911946694347466477349107245,
1.36128957131794691255204997358, 3.08755474479445968235233227101, 4.48998568235527809037970386754, 5.16748239160056455420473703524, 6.27239462408285122327252201662, 7.58032761229907992909239210462, 8.318931835025816229912597778668, 8.983833330203497868127654990959, 10.14334993604392975719401580736, 10.89914398874432347050582510547