Properties

Label 544.1.cd.a
Level 544544
Weight 11
Character orbit 544.cd
Analytic conductor 0.2710.271
Analytic rank 00
Dimension 88
Projective image D16D_{16}
CM discriminant -4
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [544,1,Mod(65,544)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(544, base_ring=CyclotomicField(16)) chi = DirichletCharacter(H, H._module([0, 0, 9])) N = Newforms(chi, 1, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("544.65"); S:= CuspForms(chi, 1); N := Newforms(S);
 
Level: N N == 544=2517 544 = 2^{5} \cdot 17
Weight: k k == 1 1
Character orbit: [χ][\chi] == 544.cd (of order 1616, degree 88, minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 0.2714913668720.271491366872
Analytic rank: 00
Dimension: 88
Coefficient field: Q(ζ16)\Q(\zeta_{16})
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x8+1 x^{8} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a9]\Z[a_1, \ldots, a_{9}]
Coefficient ring index: 1 1
Twist minimal: yes
Projective image: D16D_{16}
Projective field: Galois closure of Q[x]/(x16)\mathbb{Q}[x]/(x^{16} - \cdots)

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

The qq-expansion and trace form are shown below.

f(q)f(q) == q+(ζ166ζ16)q5+ζ163q9+(ζ167ζ165)q13ζ162q17+(ζ167++ζ162)q25+(ζ164ζ163)q29++(ζ166+ζ16)q97+O(q100) q + ( - \zeta_{16}^{6} - \zeta_{16}) q^{5} + \zeta_{16}^{3} q^{9} + ( - \zeta_{16}^{7} - \zeta_{16}^{5}) q^{13} - \zeta_{16}^{2} q^{17} + (\zeta_{16}^{7} + \cdots + \zeta_{16}^{2}) q^{25} + (\zeta_{16}^{4} - \zeta_{16}^{3}) q^{29} + \cdots + ( - \zeta_{16}^{6} + \zeta_{16}) q^{97} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 8q8q538q658q738q85+O(q100) 8 q - 8 q^{53} - 8 q^{65} - 8 q^{73} - 8 q^{85}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/544Z)×\left(\mathbb{Z}/544\mathbb{Z}\right)^\times.

nn 6969 511511 513513
χ(n)\chi(n) 11 11 ζ163-\zeta_{16}^{3}

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
65.1
−0.382683 0.923880i
−0.923880 + 0.382683i
−0.923880 0.382683i
0.382683 0.923880i
−0.382683 + 0.923880i
0.923880 + 0.382683i
0.923880 0.382683i
0.382683 + 0.923880i
0 0 0 −0.324423 + 0.216773i 0 0 0 0.923880 + 0.382683i 0
97.1 0 0 0 1.63099 + 0.324423i 0 0 0 −0.382683 + 0.923880i 0
129.1 0 0 0 1.63099 0.324423i 0 0 0 −0.382683 0.923880i 0
193.1 0 0 0 −1.08979 + 1.63099i 0 0 0 −0.923880 + 0.382683i 0
385.1 0 0 0 −0.324423 0.216773i 0 0 0 0.923880 0.382683i 0
449.1 0 0 0 −0.216773 1.08979i 0 0 0 0.382683 + 0.923880i 0
481.1 0 0 0 −0.216773 + 1.08979i 0 0 0 0.382683 0.923880i 0
513.1 0 0 0 −1.08979 1.63099i 0 0 0 −0.923880 0.382683i 0
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 65.1
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
4.b odd 2 1 CM by Q(1)\Q(\sqrt{-1})
17.e odd 16 1 inner
68.i even 16 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 544.1.cd.a 8
4.b odd 2 1 CM 544.1.cd.a 8
8.b even 2 1 1088.1.cz.a 8
8.d odd 2 1 1088.1.cz.a 8
17.e odd 16 1 inner 544.1.cd.a 8
68.i even 16 1 inner 544.1.cd.a 8
136.q odd 16 1 1088.1.cz.a 8
136.s even 16 1 1088.1.cz.a 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
544.1.cd.a 8 1.a even 1 1 trivial
544.1.cd.a 8 4.b odd 2 1 CM
544.1.cd.a 8 17.e odd 16 1 inner
544.1.cd.a 8 68.i even 16 1 inner
1088.1.cz.a 8 8.b even 2 1
1088.1.cz.a 8 8.d odd 2 1
1088.1.cz.a 8 136.q odd 16 1
1088.1.cz.a 8 136.s even 16 1

Hecke kernels

This newform subspace is the entire newspace S1new(544,[χ])S_{1}^{\mathrm{new}}(544, [\chi]).

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T8 T^{8} Copy content Toggle raw display
33 T8 T^{8} Copy content Toggle raw display
55 T88T5++2 T^{8} - 8 T^{5} + \cdots + 2 Copy content Toggle raw display
77 T8 T^{8} Copy content Toggle raw display
1111 T8 T^{8} Copy content Toggle raw display
1313 T8+12T4+4 T^{8} + 12T^{4} + 4 Copy content Toggle raw display
1717 (T4+1)2 (T^{4} + 1)^{2} Copy content Toggle raw display
1919 T8 T^{8} Copy content Toggle raw display
2323 T8 T^{8} Copy content Toggle raw display
2929 T8+4T6++2 T^{8} + 4 T^{6} + \cdots + 2 Copy content Toggle raw display
3131 T8 T^{8} Copy content Toggle raw display
3737 T88T5++2 T^{8} - 8 T^{5} + \cdots + 2 Copy content Toggle raw display
4141 T8+4T6++2 T^{8} + 4 T^{6} + \cdots + 2 Copy content Toggle raw display
4343 T8 T^{8} Copy content Toggle raw display
4747 T8 T^{8} Copy content Toggle raw display
5353 (T4+4T3+6T2++2)2 (T^{4} + 4 T^{3} + 6 T^{2} + \cdots + 2)^{2} Copy content Toggle raw display
5959 T8 T^{8} Copy content Toggle raw display
6161 T8+8T5++2 T^{8} + 8 T^{5} + \cdots + 2 Copy content Toggle raw display
6767 T8 T^{8} Copy content Toggle raw display
7171 T8 T^{8} Copy content Toggle raw display
7373 T8+8T7++2 T^{8} + 8 T^{7} + \cdots + 2 Copy content Toggle raw display
7979 T8 T^{8} Copy content Toggle raw display
8383 T8 T^{8} Copy content Toggle raw display
8989 T8+12T4+4 T^{8} + 12T^{4} + 4 Copy content Toggle raw display
9797 T88T5++2 T^{8} - 8 T^{5} + \cdots + 2 Copy content Toggle raw display
show more
show less