gp: [N,k,chi] = [544,1,Mod(65,544)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(544, base_ring=CyclotomicField(16))
chi = DirichletCharacter(H, H._module([0, 0, 9]))
N = Newforms(chi, 1, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("544.65");
S:= CuspForms(chi, 1);
N := Newforms(S);
Newform invariants
sage: traces = []
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
The q q q -expansion and trace form are shown below.
Character values
We give the values of χ \chi χ on generators for ( Z / 544 Z ) × \left(\mathbb{Z}/544\mathbb{Z}\right)^\times ( Z / 5 4 4 Z ) × .
n n n
69 69 6 9
511 511 5 1 1
513 513 5 1 3
χ ( n ) \chi(n) χ ( n )
1 1 1
1 1 1
− ζ 16 3 -\zeta_{16}^{3} − ζ 1 6 3
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace is the entire newspace S 1 n e w ( 544 , [ χ ] ) S_{1}^{\mathrm{new}}(544, [\chi]) S 1 n e w ( 5 4 4 , [ χ ] ) .
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T 8 T^{8} T 8
T^8
3 3 3
T 8 T^{8} T 8
T^8
5 5 5
T 8 − 8 T 5 + ⋯ + 2 T^{8} - 8 T^{5} + \cdots + 2 T 8 − 8 T 5 + ⋯ + 2
T^8 - 8*T^5 + 2*T^4 + 12*T^2 + 8*T + 2
7 7 7
T 8 T^{8} T 8
T^8
11 11 1 1
T 8 T^{8} T 8
T^8
13 13 1 3
T 8 + 12 T 4 + 4 T^{8} + 12T^{4} + 4 T 8 + 1 2 T 4 + 4
T^8 + 12*T^4 + 4
17 17 1 7
( T 4 + 1 ) 2 (T^{4} + 1)^{2} ( T 4 + 1 ) 2
(T^4 + 1)^2
19 19 1 9
T 8 T^{8} T 8
T^8
23 23 2 3
T 8 T^{8} T 8
T^8
29 29 2 9
T 8 + 4 T 6 + ⋯ + 2 T^{8} + 4 T^{6} + \cdots + 2 T 8 + 4 T 6 + ⋯ + 2
T^8 + 4*T^6 + 6*T^4 - 8*T^3 + 4*T^2 + 8*T + 2
31 31 3 1
T 8 T^{8} T 8
T^8
37 37 3 7
T 8 − 8 T 5 + ⋯ + 2 T^{8} - 8 T^{5} + \cdots + 2 T 8 − 8 T 5 + ⋯ + 2
T^8 - 8*T^5 + 2*T^4 + 12*T^2 + 8*T + 2
41 41 4 1
T 8 + 4 T 6 + ⋯ + 2 T^{8} + 4 T^{6} + \cdots + 2 T 8 + 4 T 6 + ⋯ + 2
T^8 + 4*T^6 + 6*T^4 + 8*T^3 + 4*T^2 - 8*T + 2
43 43 4 3
T 8 T^{8} T 8
T^8
47 47 4 7
T 8 T^{8} T 8
T^8
53 53 5 3
( T 4 + 4 T 3 + 6 T 2 + ⋯ + 2 ) 2 (T^{4} + 4 T^{3} + 6 T^{2} + \cdots + 2)^{2} ( T 4 + 4 T 3 + 6 T 2 + ⋯ + 2 ) 2
(T^4 + 4*T^3 + 6*T^2 + 4*T + 2)^2
59 59 5 9
T 8 T^{8} T 8
T^8
61 61 6 1
T 8 + 8 T 5 + ⋯ + 2 T^{8} + 8 T^{5} + \cdots + 2 T 8 + 8 T 5 + ⋯ + 2
T^8 + 8*T^5 + 2*T^4 + 12*T^2 - 8*T + 2
67 67 6 7
T 8 T^{8} T 8
T^8
71 71 7 1
T 8 T^{8} T 8
T^8
73 73 7 3
T 8 + 8 T 7 + ⋯ + 2 T^{8} + 8 T^{7} + \cdots + 2 T 8 + 8 T 7 + ⋯ + 2
T^8 + 8*T^7 + 28*T^6 + 56*T^5 + 70*T^4 + 56*T^3 + 28*T^2 + 8*T + 2
79 79 7 9
T 8 T^{8} T 8
T^8
83 83 8 3
T 8 T^{8} T 8
T^8
89 89 8 9
T 8 + 12 T 4 + 4 T^{8} + 12T^{4} + 4 T 8 + 1 2 T 4 + 4
T^8 + 12*T^4 + 4
97 97 9 7
T 8 − 8 T 5 + ⋯ + 2 T^{8} - 8 T^{5} + \cdots + 2 T 8 − 8 T 5 + ⋯ + 2
T^8 - 8*T^5 + 2*T^4 + 12*T^2 + 8*T + 2
show more
show less