L(s) = 1 | + (7.27 + 8.66i)2-s + (−64.9 − 48.3i)3-s + (−22.2 + 126. i)4-s + (−403. − 1.10e3i)5-s + (−53.2 − 914. i)6-s + (−619. − 3.51e3i)7-s + (−1.25e3 + 724. i)8-s + (1.88e3 + 6.28e3i)9-s + (6.67e3 − 1.15e4i)10-s + (−7.11e3 + 1.95e4i)11-s + (7.54e3 − 7.11e3i)12-s + (2.16e4 + 1.81e4i)13-s + (2.59e4 − 3.09e4i)14-s + (−2.74e4 + 9.15e4i)15-s + (−1.53e4 − 5.60e3i)16-s + (−6.01e4 − 3.47e4i)17-s + ⋯ |
L(s) = 1 | + (0.454 + 0.541i)2-s + (−0.802 − 0.597i)3-s + (−0.0868 + 0.492i)4-s + (−0.645 − 1.77i)5-s + (−0.0411 − 0.705i)6-s + (−0.258 − 1.46i)7-s + (−0.306 + 0.176i)8-s + (0.286 + 0.958i)9-s + (0.667 − 1.15i)10-s + (−0.485 + 1.33i)11-s + (0.363 − 0.343i)12-s + (0.758 + 0.636i)13-s + (0.675 − 0.805i)14-s + (−0.541 + 1.80i)15-s + (−0.234 − 0.0855i)16-s + (−0.720 − 0.415i)17-s + ⋯ |
Λ(s)=(=(54s/2ΓC(s)L(s)(−0.686−0.727i)Λ(9−s)
Λ(s)=(=(54s/2ΓC(s+4)L(s)(−0.686−0.727i)Λ(1−s)
Degree: |
2 |
Conductor: |
54
= 2⋅33
|
Sign: |
−0.686−0.727i
|
Analytic conductor: |
21.9984 |
Root analytic conductor: |
4.69024 |
Motivic weight: |
8 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ54(5,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 54, ( :4), −0.686−0.727i)
|
Particular Values
L(29) |
≈ |
0.0100124+0.0232097i |
L(21) |
≈ |
0.0100124+0.0232097i |
L(5) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−7.27−8.66i)T |
| 3 | 1+(64.9+48.3i)T |
good | 5 | 1+(403.+1.10e3i)T+(−2.99e5+2.51e5i)T2 |
| 7 | 1+(619.+3.51e3i)T+(−5.41e6+1.97e6i)T2 |
| 11 | 1+(7.11e3−1.95e4i)T+(−1.64e8−1.37e8i)T2 |
| 13 | 1+(−2.16e4−1.81e4i)T+(1.41e8+8.03e8i)T2 |
| 17 | 1+(6.01e4+3.47e4i)T+(3.48e9+6.04e9i)T2 |
| 19 | 1+(7.33e4+1.27e5i)T+(−8.49e9+1.47e10i)T2 |
| 23 | 1+(−3.07e5−5.42e4i)T+(7.35e10+2.67e10i)T2 |
| 29 | 1+(−2.37e5−2.83e5i)T+(−8.68e10+4.92e11i)T2 |
| 31 | 1+(8.74e4−4.95e5i)T+(−8.01e11−2.91e11i)T2 |
| 37 | 1+(1.45e5−2.52e5i)T+(−1.75e12−3.04e12i)T2 |
| 41 | 1+(2.34e5−2.78e5i)T+(−1.38e12−7.86e12i)T2 |
| 43 | 1+(−8.71e5−3.17e5i)T+(8.95e12+7.51e12i)T2 |
| 47 | 1+(3.13e6−5.52e5i)T+(2.23e13−8.14e12i)T2 |
| 53 | 1−1.14e7iT−6.22e13T2 |
| 59 | 1+(−4.51e6−1.24e7i)T+(−1.12e14+9.43e13i)T2 |
| 61 | 1+(2.27e6+1.29e7i)T+(−1.80e14+6.55e13i)T2 |
| 67 | 1+(2.05e7+1.72e7i)T+(7.05e13+3.99e14i)T2 |
| 71 | 1+(1.61e7+9.30e6i)T+(3.22e14+5.59e14i)T2 |
| 73 | 1+(1.09e7+1.88e7i)T+(−4.03e14+6.98e14i)T2 |
| 79 | 1+(−1.58e7+1.32e7i)T+(2.63e14−1.49e15i)T2 |
| 83 | 1+(−8.05e6−9.59e6i)T+(−3.91e14+2.21e15i)T2 |
| 89 | 1+(6.09e7−3.51e7i)T+(1.96e15−3.40e15i)T2 |
| 97 | 1+(−1.24e8−4.51e7i)T+(6.00e15+5.03e15i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−13.08336855283686089514075160669, −12.12807791239798743859871743053, −10.87905791056400884861345450932, −9.042036964775354111100947377047, −7.62678221106786775192040328365, −6.78671387056670746715558530377, −4.87691505077955818057332095276, −4.38009965338847418580295982424, −1.25347321485589206091544561974, −0.009197256914729123458217072580,
2.75251222111938434454976196780, 3.68723444492281639498389011225, 5.70821418162235409549246706872, 6.40545472165208942360285788294, 8.529288952899115962807859998501, 10.26394548494059577608444547265, 11.05018929318321842079488666875, 11.66548464758184046853709474614, 12.99916048857715579200992818514, 14.65052764151048346521851410340