Properties

Label 2-54-27.11-c8-0-0
Degree $2$
Conductor $54$
Sign $-0.686 + 0.727i$
Analytic cond. $21.9984$
Root an. cond. $4.69024$
Motivic weight $8$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (7.27 − 8.66i)2-s + (−64.9 + 48.3i)3-s + (−22.2 − 126. i)4-s + (−403. + 1.10e3i)5-s + (−53.2 + 914. i)6-s + (−619. + 3.51e3i)7-s + (−1.25e3 − 724. i)8-s + (1.88e3 − 6.28e3i)9-s + (6.67e3 + 1.15e4i)10-s + (−7.11e3 − 1.95e4i)11-s + (7.54e3 + 7.11e3i)12-s + (2.16e4 − 1.81e4i)13-s + (2.59e4 + 3.09e4i)14-s + (−2.74e4 − 9.15e4i)15-s + (−1.53e4 + 5.60e3i)16-s + (−6.01e4 + 3.47e4i)17-s + ⋯
L(s)  = 1  + (0.454 − 0.541i)2-s + (−0.802 + 0.597i)3-s + (−0.0868 − 0.492i)4-s + (−0.645 + 1.77i)5-s + (−0.0411 + 0.705i)6-s + (−0.258 + 1.46i)7-s + (−0.306 − 0.176i)8-s + (0.286 − 0.958i)9-s + (0.667 + 1.15i)10-s + (−0.485 − 1.33i)11-s + (0.363 + 0.343i)12-s + (0.758 − 0.636i)13-s + (0.675 + 0.805i)14-s + (−0.541 − 1.80i)15-s + (−0.234 + 0.0855i)16-s + (−0.720 + 0.415i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 54 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.686 + 0.727i)\, \overline{\Lambda}(9-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 54 ^{s/2} \, \Gamma_{\C}(s+4) \, L(s)\cr =\mathstrut & (-0.686 + 0.727i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(54\)    =    \(2 \cdot 3^{3}\)
Sign: $-0.686 + 0.727i$
Analytic conductor: \(21.9984\)
Root analytic conductor: \(4.69024\)
Motivic weight: \(8\)
Rational: no
Arithmetic: yes
Character: $\chi_{54} (11, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 54,\ (\ :4),\ -0.686 + 0.727i)\)

Particular Values

\(L(\frac{9}{2})\) \(\approx\) \(0.0100124 - 0.0232097i\)
\(L(\frac12)\) \(\approx\) \(0.0100124 - 0.0232097i\)
\(L(5)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (-7.27 + 8.66i)T \)
3 \( 1 + (64.9 - 48.3i)T \)
good5 \( 1 + (403. - 1.10e3i)T + (-2.99e5 - 2.51e5i)T^{2} \)
7 \( 1 + (619. - 3.51e3i)T + (-5.41e6 - 1.97e6i)T^{2} \)
11 \( 1 + (7.11e3 + 1.95e4i)T + (-1.64e8 + 1.37e8i)T^{2} \)
13 \( 1 + (-2.16e4 + 1.81e4i)T + (1.41e8 - 8.03e8i)T^{2} \)
17 \( 1 + (6.01e4 - 3.47e4i)T + (3.48e9 - 6.04e9i)T^{2} \)
19 \( 1 + (7.33e4 - 1.27e5i)T + (-8.49e9 - 1.47e10i)T^{2} \)
23 \( 1 + (-3.07e5 + 5.42e4i)T + (7.35e10 - 2.67e10i)T^{2} \)
29 \( 1 + (-2.37e5 + 2.83e5i)T + (-8.68e10 - 4.92e11i)T^{2} \)
31 \( 1 + (8.74e4 + 4.95e5i)T + (-8.01e11 + 2.91e11i)T^{2} \)
37 \( 1 + (1.45e5 + 2.52e5i)T + (-1.75e12 + 3.04e12i)T^{2} \)
41 \( 1 + (2.34e5 + 2.78e5i)T + (-1.38e12 + 7.86e12i)T^{2} \)
43 \( 1 + (-8.71e5 + 3.17e5i)T + (8.95e12 - 7.51e12i)T^{2} \)
47 \( 1 + (3.13e6 + 5.52e5i)T + (2.23e13 + 8.14e12i)T^{2} \)
53 \( 1 + 1.14e7iT - 6.22e13T^{2} \)
59 \( 1 + (-4.51e6 + 1.24e7i)T + (-1.12e14 - 9.43e13i)T^{2} \)
61 \( 1 + (2.27e6 - 1.29e7i)T + (-1.80e14 - 6.55e13i)T^{2} \)
67 \( 1 + (2.05e7 - 1.72e7i)T + (7.05e13 - 3.99e14i)T^{2} \)
71 \( 1 + (1.61e7 - 9.30e6i)T + (3.22e14 - 5.59e14i)T^{2} \)
73 \( 1 + (1.09e7 - 1.88e7i)T + (-4.03e14 - 6.98e14i)T^{2} \)
79 \( 1 + (-1.58e7 - 1.32e7i)T + (2.63e14 + 1.49e15i)T^{2} \)
83 \( 1 + (-8.05e6 + 9.59e6i)T + (-3.91e14 - 2.21e15i)T^{2} \)
89 \( 1 + (6.09e7 + 3.51e7i)T + (1.96e15 + 3.40e15i)T^{2} \)
97 \( 1 + (-1.24e8 + 4.51e7i)T + (6.00e15 - 5.03e15i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.65052764151048346521851410340, −12.99916048857715579200992818514, −11.66548464758184046853709474614, −11.05018929318321842079488666875, −10.26394548494059577608444547265, −8.529288952899115962807859998501, −6.40545472165208942360285788294, −5.70821418162235409549246706872, −3.68723444492281639498389011225, −2.75251222111938434454976196780, 0.009197256914729123458217072580, 1.25347321485589206091544561974, 4.38009965338847418580295982424, 4.87691505077955818057332095276, 6.78671387056670746715558530377, 7.62678221106786775192040328365, 9.042036964775354111100947377047, 10.87905791056400884861345450932, 12.12807791239798743859871743053, 13.08336855283686089514075160669

Graph of the $Z$-function along the critical line