L(s) = 1 | + (0.173 − 0.984i)2-s + (0.140 + 1.72i)3-s + (−0.939 − 0.342i)4-s + (2.42 − 2.03i)5-s + (1.72 + 0.161i)6-s + (−3.46 + 1.26i)7-s + (−0.5 + 0.866i)8-s + (−2.96 + 0.484i)9-s + (−1.58 − 2.74i)10-s + (−1.75 − 1.46i)11-s + (0.458 − 1.67i)12-s + (0.538 + 3.05i)13-s + (0.640 + 3.62i)14-s + (3.85 + 3.90i)15-s + (0.766 + 0.642i)16-s + (−0.862 − 1.49i)17-s + ⋯ |
L(s) = 1 | + (0.122 − 0.696i)2-s + (0.0810 + 0.996i)3-s + (−0.469 − 0.171i)4-s + (1.08 − 0.910i)5-s + (0.704 + 0.0659i)6-s + (−1.30 + 0.476i)7-s + (−0.176 + 0.306i)8-s + (−0.986 + 0.161i)9-s + (−0.500 − 0.867i)10-s + (−0.527 − 0.442i)11-s + (0.132 − 0.482i)12-s + (0.149 + 0.846i)13-s + (0.171 + 0.970i)14-s + (0.995 + 1.00i)15-s + (0.191 + 0.160i)16-s + (−0.209 − 0.362i)17-s + ⋯ |
Λ(s)=(=(54s/2ΓC(s)L(s)(0.943+0.331i)Λ(2−s)
Λ(s)=(=(54s/2ΓC(s+1/2)L(s)(0.943+0.331i)Λ(1−s)
Degree: |
2 |
Conductor: |
54
= 2⋅33
|
Sign: |
0.943+0.331i
|
Analytic conductor: |
0.431192 |
Root analytic conductor: |
0.656652 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ54(25,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 54, ( :1/2), 0.943+0.331i)
|
Particular Values
L(1) |
≈ |
0.879971−0.150256i |
L(21) |
≈ |
0.879971−0.150256i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.173+0.984i)T |
| 3 | 1+(−0.140−1.72i)T |
good | 5 | 1+(−2.42+2.03i)T+(0.868−4.92i)T2 |
| 7 | 1+(3.46−1.26i)T+(5.36−4.49i)T2 |
| 11 | 1+(1.75+1.46i)T+(1.91+10.8i)T2 |
| 13 | 1+(−0.538−3.05i)T+(−12.2+4.44i)T2 |
| 17 | 1+(0.862+1.49i)T+(−8.5+14.7i)T2 |
| 19 | 1+(−1.69+2.93i)T+(−9.5−16.4i)T2 |
| 23 | 1+(−3.15−1.14i)T+(17.6+14.7i)T2 |
| 29 | 1+(0.101−0.576i)T+(−27.2−9.91i)T2 |
| 31 | 1+(−4.35−1.58i)T+(23.7+19.9i)T2 |
| 37 | 1+(−3.65−6.32i)T+(−18.5+32.0i)T2 |
| 41 | 1+(1.22+6.97i)T+(−38.5+14.0i)T2 |
| 43 | 1+(−1.27−1.06i)T+(7.46+42.3i)T2 |
| 47 | 1+(−3.61+1.31i)T+(36.0−30.2i)T2 |
| 53 | 1+2.58T+53T2 |
| 59 | 1+(7.40−6.21i)T+(10.2−58.1i)T2 |
| 61 | 1+(12.3−4.47i)T+(46.7−39.2i)T2 |
| 67 | 1+(1.49+8.47i)T+(−62.9+22.9i)T2 |
| 71 | 1+(0.993+1.72i)T+(−35.5+61.4i)T2 |
| 73 | 1+(5.32−9.22i)T+(−36.5−63.2i)T2 |
| 79 | 1+(−2.44+13.8i)T+(−74.2−27.0i)T2 |
| 83 | 1+(0.538−3.05i)T+(−77.9−28.3i)T2 |
| 89 | 1+(−8.67+15.0i)T+(−44.5−77.0i)T2 |
| 97 | 1+(−7.04−5.90i)T+(16.8+95.5i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−15.49676549349205841562086732077, −13.82015952008156761400075874094, −13.21040081723104218635661320721, −11.89012543446478273232208449329, −10.45998674048843389824743834186, −9.356336908891079925551746874955, −8.981264507000523657803178351288, −6.03483894661563278655031822731, −4.83378555322537888982443692768, −2.91630507369118712360623845274,
2.95074388022841310194526929879, 5.86887439080793451778033588558, 6.63577943667956578778559378443, 7.76091571887258369058251547947, 9.530707812889934449300478142768, 10.58785746035975508297960593748, 12.63598743506795851661650962670, 13.29752534848387743154550918860, 14.15353192393420481459468555389, 15.28588607784934365085366782655