Properties

Label 2-54-27.13-c1-0-1
Degree $2$
Conductor $54$
Sign $0.943 - 0.331i$
Analytic cond. $0.431192$
Root an. cond. $0.656652$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.173 + 0.984i)2-s + (0.140 − 1.72i)3-s + (−0.939 + 0.342i)4-s + (2.42 + 2.03i)5-s + (1.72 − 0.161i)6-s + (−3.46 − 1.26i)7-s + (−0.5 − 0.866i)8-s + (−2.96 − 0.484i)9-s + (−1.58 + 2.74i)10-s + (−1.75 + 1.46i)11-s + (0.458 + 1.67i)12-s + (0.538 − 3.05i)13-s + (0.640 − 3.62i)14-s + (3.85 − 3.90i)15-s + (0.766 − 0.642i)16-s + (−0.862 + 1.49i)17-s + ⋯
L(s)  = 1  + (0.122 + 0.696i)2-s + (0.0810 − 0.996i)3-s + (−0.469 + 0.171i)4-s + (1.08 + 0.910i)5-s + (0.704 − 0.0659i)6-s + (−1.30 − 0.476i)7-s + (−0.176 − 0.306i)8-s + (−0.986 − 0.161i)9-s + (−0.500 + 0.867i)10-s + (−0.527 + 0.442i)11-s + (0.132 + 0.482i)12-s + (0.149 − 0.846i)13-s + (0.171 − 0.970i)14-s + (0.995 − 1.00i)15-s + (0.191 − 0.160i)16-s + (−0.209 + 0.362i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 54 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.943 - 0.331i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 54 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.943 - 0.331i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(54\)    =    \(2 \cdot 3^{3}\)
Sign: $0.943 - 0.331i$
Analytic conductor: \(0.431192\)
Root analytic conductor: \(0.656652\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{54} (13, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 54,\ (\ :1/2),\ 0.943 - 0.331i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.879971 + 0.150256i\)
\(L(\frac12)\) \(\approx\) \(0.879971 + 0.150256i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (-0.173 - 0.984i)T \)
3 \( 1 + (-0.140 + 1.72i)T \)
good5 \( 1 + (-2.42 - 2.03i)T + (0.868 + 4.92i)T^{2} \)
7 \( 1 + (3.46 + 1.26i)T + (5.36 + 4.49i)T^{2} \)
11 \( 1 + (1.75 - 1.46i)T + (1.91 - 10.8i)T^{2} \)
13 \( 1 + (-0.538 + 3.05i)T + (-12.2 - 4.44i)T^{2} \)
17 \( 1 + (0.862 - 1.49i)T + (-8.5 - 14.7i)T^{2} \)
19 \( 1 + (-1.69 - 2.93i)T + (-9.5 + 16.4i)T^{2} \)
23 \( 1 + (-3.15 + 1.14i)T + (17.6 - 14.7i)T^{2} \)
29 \( 1 + (0.101 + 0.576i)T + (-27.2 + 9.91i)T^{2} \)
31 \( 1 + (-4.35 + 1.58i)T + (23.7 - 19.9i)T^{2} \)
37 \( 1 + (-3.65 + 6.32i)T + (-18.5 - 32.0i)T^{2} \)
41 \( 1 + (1.22 - 6.97i)T + (-38.5 - 14.0i)T^{2} \)
43 \( 1 + (-1.27 + 1.06i)T + (7.46 - 42.3i)T^{2} \)
47 \( 1 + (-3.61 - 1.31i)T + (36.0 + 30.2i)T^{2} \)
53 \( 1 + 2.58T + 53T^{2} \)
59 \( 1 + (7.40 + 6.21i)T + (10.2 + 58.1i)T^{2} \)
61 \( 1 + (12.3 + 4.47i)T + (46.7 + 39.2i)T^{2} \)
67 \( 1 + (1.49 - 8.47i)T + (-62.9 - 22.9i)T^{2} \)
71 \( 1 + (0.993 - 1.72i)T + (-35.5 - 61.4i)T^{2} \)
73 \( 1 + (5.32 + 9.22i)T + (-36.5 + 63.2i)T^{2} \)
79 \( 1 + (-2.44 - 13.8i)T + (-74.2 + 27.0i)T^{2} \)
83 \( 1 + (0.538 + 3.05i)T + (-77.9 + 28.3i)T^{2} \)
89 \( 1 + (-8.67 - 15.0i)T + (-44.5 + 77.0i)T^{2} \)
97 \( 1 + (-7.04 + 5.90i)T + (16.8 - 95.5i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.28588607784934365085366782655, −14.15353192393420481459468555389, −13.29752534848387743154550918860, −12.63598743506795851661650962670, −10.58785746035975508297960593748, −9.530707812889934449300478142768, −7.76091571887258369058251547947, −6.63577943667956578778559378443, −5.86887439080793451778033588558, −2.95074388022841310194526929879, 2.91630507369118712360623845274, 4.83378555322537888982443692768, 6.03483894661563278655031822731, 8.981264507000523657803178351288, 9.356336908891079925551746874955, 10.45998674048843389824743834186, 11.89012543446478273232208449329, 13.21040081723104218635661320721, 13.82015952008156761400075874094, 15.49676549349205841562086732077

Graph of the $Z$-function along the critical line