L(s) = 1 | + (−0.483 − 1.32i)2-s + (−2.93 + 0.613i)3-s + (−1.53 + 1.28i)4-s + (−7.71 + 1.35i)5-s + (2.23 + 3.60i)6-s + (−0.690 − 0.579i)7-s + (2.44 + 1.41i)8-s + (8.24 − 3.60i)9-s + (5.53 + 9.59i)10-s + (−15.2 − 2.68i)11-s + (3.71 − 4.71i)12-s + (−0.854 − 0.310i)13-s + (−0.435 + 1.19i)14-s + (21.8 − 8.72i)15-s + (0.694 − 3.93i)16-s + (10.6 − 6.15i)17-s + ⋯ |
L(s) = 1 | + (−0.241 − 0.664i)2-s + (−0.978 + 0.204i)3-s + (−0.383 + 0.321i)4-s + (−1.54 + 0.271i)5-s + (0.372 + 0.600i)6-s + (−0.0986 − 0.0827i)7-s + (0.306 + 0.176i)8-s + (0.916 − 0.400i)9-s + (0.553 + 0.959i)10-s + (−1.38 − 0.244i)11-s + (0.309 − 0.392i)12-s + (−0.0657 − 0.0239i)13-s + (−0.0311 + 0.0855i)14-s + (1.45 − 0.581i)15-s + (0.0434 − 0.246i)16-s + (0.627 − 0.362i)17-s + ⋯ |
Λ(s)=(=(54s/2ΓC(s)L(s)(−0.883−0.468i)Λ(3−s)
Λ(s)=(=(54s/2ΓC(s+1)L(s)(−0.883−0.468i)Λ(1−s)
Degree: |
2 |
Conductor: |
54
= 2⋅33
|
Sign: |
−0.883−0.468i
|
Analytic conductor: |
1.47139 |
Root analytic conductor: |
1.21301 |
Motivic weight: |
2 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ54(47,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 54, ( :1), −0.883−0.468i)
|
Particular Values
L(23) |
≈ |
0.00182995+0.00736161i |
L(21) |
≈ |
0.00182995+0.00736161i |
L(2) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.483+1.32i)T |
| 3 | 1+(2.93−0.613i)T |
good | 5 | 1+(7.71−1.35i)T+(23.4−8.55i)T2 |
| 7 | 1+(0.690+0.579i)T+(8.50+48.2i)T2 |
| 11 | 1+(15.2+2.68i)T+(113.+41.3i)T2 |
| 13 | 1+(0.854+0.310i)T+(129.+108.i)T2 |
| 17 | 1+(−10.6+6.15i)T+(144.5−250.i)T2 |
| 19 | 1+(5.40−9.36i)T+(−180.5−312.i)T2 |
| 23 | 1+(21.0+25.1i)T+(−91.8+520.i)T2 |
| 29 | 1+(−19.3−53.1i)T+(−644.+540.i)T2 |
| 31 | 1+(37.9−31.8i)T+(166.−946.i)T2 |
| 37 | 1+(17.4+30.2i)T+(−684.5+1.18e3i)T2 |
| 41 | 1+(12.2−33.6i)T+(−1.28e3−1.08e3i)T2 |
| 43 | 1+(−7.20+40.8i)T+(−1.73e3−632.i)T2 |
| 47 | 1+(15.9−18.9i)T+(−383.−2.17e3i)T2 |
| 53 | 1+50.3iT−2.80e3T2 |
| 59 | 1+(−65.7+11.5i)T+(3.27e3−1.19e3i)T2 |
| 61 | 1+(18.7+15.7i)T+(646.+3.66e3i)T2 |
| 67 | 1+(61.2+22.3i)T+(3.43e3+2.88e3i)T2 |
| 71 | 1+(−24.4+14.1i)T+(2.52e3−4.36e3i)T2 |
| 73 | 1+(10.7−18.6i)T+(−2.66e3−4.61e3i)T2 |
| 79 | 1+(27.2−9.90i)T+(4.78e3−4.01e3i)T2 |
| 83 | 1+(0.0509+0.139i)T+(−5.27e3+4.42e3i)T2 |
| 89 | 1+(79.3+45.7i)T+(3.96e3+6.85e3i)T2 |
| 97 | 1+(17.4−98.9i)T+(−8.84e3−3.21e3i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−14.59837766949787657656472169916, −12.71731725492399289918372556242, −12.07945703781928438147186662095, −10.91727637263826496530588210929, −10.30531593631983914363450302034, −8.345798908613965302197947976017, −7.14957062882141058282042341103, −5.07347808183806805051262766568, −3.55205614885124629113812173392, −0.008878731844194105501932087260,
4.33309145550125846062191673777, 5.71223418392830785362933180869, 7.40833568522916347895942264872, 8.062467583069944309398557322826, 10.00596258588665242886314820144, 11.27766965995082418894982355025, 12.27532279411946299297429240273, 13.34863016213685537678690633352, 15.30562485059346714811042749641, 15.71713081316890238044754973447