sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(54, base_ring=CyclotomicField(18))
M = H._module
chi = DirichletCharacter(H, M([7]))
pari:[g,chi] = znchar(Mod(47,54))
\(\chi_{54}(5,\cdot)\)
\(\chi_{54}(11,\cdot)\)
\(\chi_{54}(23,\cdot)\)
\(\chi_{54}(29,\cdot)\)
\(\chi_{54}(41,\cdot)\)
\(\chi_{54}(47,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\(29\) → \(e\left(\frac{7}{18}\right)\)
\(a\) |
\(-1\) | \(1\) | \(5\) | \(7\) | \(11\) | \(13\) | \(17\) | \(19\) | \(23\) | \(25\) | \(29\) | \(31\) |
\( \chi_{ 54 }(47, a) \) |
\(-1\) | \(1\) | \(e\left(\frac{17}{18}\right)\) | \(e\left(\frac{2}{9}\right)\) | \(e\left(\frac{1}{18}\right)\) | \(e\left(\frac{1}{9}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{5}{18}\right)\) | \(e\left(\frac{8}{9}\right)\) | \(e\left(\frac{7}{18}\right)\) | \(e\left(\frac{7}{9}\right)\) |
sage:chi.jacobi_sum(n)
sage:chi.gauss_sum(a)
pari:znchargauss(g,chi,a)
sage:chi.jacobi_sum(n)
sage:chi.kloosterman_sum(a,b)