L(s) = 1 | + (0.483 + 1.32i)2-s + (0.320 − 2.98i)3-s + (−1.53 + 1.28i)4-s + (5.90 − 1.04i)5-s + (4.11 − 1.01i)6-s + (5.59 + 4.69i)7-s + (−2.44 − 1.41i)8-s + (−8.79 − 1.91i)9-s + (4.23 + 7.34i)10-s + (−20.3 − 3.59i)11-s + (3.34 + 4.98i)12-s + (6.40 + 2.33i)13-s + (−3.53 + 9.71i)14-s + (−1.20 − 17.9i)15-s + (0.694 − 3.93i)16-s + (1.96 − 1.13i)17-s + ⋯ |
L(s) = 1 | + (0.241 + 0.664i)2-s + (0.106 − 0.994i)3-s + (−0.383 + 0.321i)4-s + (1.18 − 0.208i)5-s + (0.686 − 0.169i)6-s + (0.799 + 0.671i)7-s + (−0.306 − 0.176i)8-s + (−0.977 − 0.212i)9-s + (0.423 + 0.734i)10-s + (−1.85 − 0.326i)11-s + (0.278 + 0.415i)12-s + (0.492 + 0.179i)13-s + (−0.252 + 0.693i)14-s + (−0.0806 − 1.19i)15-s + (0.0434 − 0.246i)16-s + (0.115 − 0.0667i)17-s + ⋯ |
Λ(s)=(=(54s/2ΓC(s)L(s)(0.989−0.143i)Λ(3−s)
Λ(s)=(=(54s/2ΓC(s+1)L(s)(0.989−0.143i)Λ(1−s)
Degree: |
2 |
Conductor: |
54
= 2⋅33
|
Sign: |
0.989−0.143i
|
Analytic conductor: |
1.47139 |
Root analytic conductor: |
1.21301 |
Motivic weight: |
2 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ54(47,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 54, ( :1), 0.989−0.143i)
|
Particular Values
L(23) |
≈ |
1.42603+0.102725i |
L(21) |
≈ |
1.42603+0.102725i |
L(2) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.483−1.32i)T |
| 3 | 1+(−0.320+2.98i)T |
good | 5 | 1+(−5.90+1.04i)T+(23.4−8.55i)T2 |
| 7 | 1+(−5.59−4.69i)T+(8.50+48.2i)T2 |
| 11 | 1+(20.3+3.59i)T+(113.+41.3i)T2 |
| 13 | 1+(−6.40−2.33i)T+(129.+108.i)T2 |
| 17 | 1+(−1.96+1.13i)T+(144.5−250.i)T2 |
| 19 | 1+(12.1−21.0i)T+(−180.5−312.i)T2 |
| 23 | 1+(15.5+18.5i)T+(−91.8+520.i)T2 |
| 29 | 1+(−6.32−17.3i)T+(−644.+540.i)T2 |
| 31 | 1+(−16.6+13.9i)T+(166.−946.i)T2 |
| 37 | 1+(−22.3−38.7i)T+(−684.5+1.18e3i)T2 |
| 41 | 1+(−17.5+48.1i)T+(−1.28e3−1.08e3i)T2 |
| 43 | 1+(−6.41+36.3i)T+(−1.73e3−632.i)T2 |
| 47 | 1+(−8.15+9.71i)T+(−383.−2.17e3i)T2 |
| 53 | 1−17.7iT−2.80e3T2 |
| 59 | 1+(−64.9+11.4i)T+(3.27e3−1.19e3i)T2 |
| 61 | 1+(−32.3−27.1i)T+(646.+3.66e3i)T2 |
| 67 | 1+(111.+40.4i)T+(3.43e3+2.88e3i)T2 |
| 71 | 1+(46.1−26.6i)T+(2.52e3−4.36e3i)T2 |
| 73 | 1+(−33.8+58.6i)T+(−2.66e3−4.61e3i)T2 |
| 79 | 1+(−104.+38.0i)T+(4.78e3−4.01e3i)T2 |
| 83 | 1+(−8.63−23.7i)T+(−5.27e3+4.42e3i)T2 |
| 89 | 1+(35.4+20.4i)T+(3.96e3+6.85e3i)T2 |
| 97 | 1+(−7.02+39.8i)T+(−8.84e3−3.21e3i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−14.91902165795005601438885060251, −13.87928894274968829674755140342, −13.17787487762470231260021246811, −12.13204730585545345598417985861, −10.44761319654681122853666920431, −8.673656772823837132699038281628, −7.895854629753285982683969700626, −6.14005312120654799924888898173, −5.34822171942748539850011891057, −2.26485979238134437549567390238,
2.54443760354670577729033765190, 4.55675581519798417268653461907, 5.70537321916241728598723569154, 8.076408782720419779323826776730, 9.646506546170726374302772556045, 10.46997567847221656283300427835, 11.18137352670377737396444068776, 13.14004942153981720913948077904, 13.82973466868233419891362729756, 14.92817190244522674129892465077