Properties

Label 2-54-27.20-c2-0-3
Degree $2$
Conductor $54$
Sign $0.989 - 0.143i$
Analytic cond. $1.47139$
Root an. cond. $1.21301$
Motivic weight $2$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.483 + 1.32i)2-s + (0.320 − 2.98i)3-s + (−1.53 + 1.28i)4-s + (5.90 − 1.04i)5-s + (4.11 − 1.01i)6-s + (5.59 + 4.69i)7-s + (−2.44 − 1.41i)8-s + (−8.79 − 1.91i)9-s + (4.23 + 7.34i)10-s + (−20.3 − 3.59i)11-s + (3.34 + 4.98i)12-s + (6.40 + 2.33i)13-s + (−3.53 + 9.71i)14-s + (−1.20 − 17.9i)15-s + (0.694 − 3.93i)16-s + (1.96 − 1.13i)17-s + ⋯
L(s)  = 1  + (0.241 + 0.664i)2-s + (0.106 − 0.994i)3-s + (−0.383 + 0.321i)4-s + (1.18 − 0.208i)5-s + (0.686 − 0.169i)6-s + (0.799 + 0.671i)7-s + (−0.306 − 0.176i)8-s + (−0.977 − 0.212i)9-s + (0.423 + 0.734i)10-s + (−1.85 − 0.326i)11-s + (0.278 + 0.415i)12-s + (0.492 + 0.179i)13-s + (−0.252 + 0.693i)14-s + (−0.0806 − 1.19i)15-s + (0.0434 − 0.246i)16-s + (0.115 − 0.0667i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 54 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.989 - 0.143i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 54 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.989 - 0.143i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(54\)    =    \(2 \cdot 3^{3}\)
Sign: $0.989 - 0.143i$
Analytic conductor: \(1.47139\)
Root analytic conductor: \(1.21301\)
Motivic weight: \(2\)
Rational: no
Arithmetic: yes
Character: $\chi_{54} (47, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 54,\ (\ :1),\ 0.989 - 0.143i)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(1.42603 + 0.102725i\)
\(L(\frac12)\) \(\approx\) \(1.42603 + 0.102725i\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (-0.483 - 1.32i)T \)
3 \( 1 + (-0.320 + 2.98i)T \)
good5 \( 1 + (-5.90 + 1.04i)T + (23.4 - 8.55i)T^{2} \)
7 \( 1 + (-5.59 - 4.69i)T + (8.50 + 48.2i)T^{2} \)
11 \( 1 + (20.3 + 3.59i)T + (113. + 41.3i)T^{2} \)
13 \( 1 + (-6.40 - 2.33i)T + (129. + 108. i)T^{2} \)
17 \( 1 + (-1.96 + 1.13i)T + (144.5 - 250. i)T^{2} \)
19 \( 1 + (12.1 - 21.0i)T + (-180.5 - 312. i)T^{2} \)
23 \( 1 + (15.5 + 18.5i)T + (-91.8 + 520. i)T^{2} \)
29 \( 1 + (-6.32 - 17.3i)T + (-644. + 540. i)T^{2} \)
31 \( 1 + (-16.6 + 13.9i)T + (166. - 946. i)T^{2} \)
37 \( 1 + (-22.3 - 38.7i)T + (-684.5 + 1.18e3i)T^{2} \)
41 \( 1 + (-17.5 + 48.1i)T + (-1.28e3 - 1.08e3i)T^{2} \)
43 \( 1 + (-6.41 + 36.3i)T + (-1.73e3 - 632. i)T^{2} \)
47 \( 1 + (-8.15 + 9.71i)T + (-383. - 2.17e3i)T^{2} \)
53 \( 1 - 17.7iT - 2.80e3T^{2} \)
59 \( 1 + (-64.9 + 11.4i)T + (3.27e3 - 1.19e3i)T^{2} \)
61 \( 1 + (-32.3 - 27.1i)T + (646. + 3.66e3i)T^{2} \)
67 \( 1 + (111. + 40.4i)T + (3.43e3 + 2.88e3i)T^{2} \)
71 \( 1 + (46.1 - 26.6i)T + (2.52e3 - 4.36e3i)T^{2} \)
73 \( 1 + (-33.8 + 58.6i)T + (-2.66e3 - 4.61e3i)T^{2} \)
79 \( 1 + (-104. + 38.0i)T + (4.78e3 - 4.01e3i)T^{2} \)
83 \( 1 + (-8.63 - 23.7i)T + (-5.27e3 + 4.42e3i)T^{2} \)
89 \( 1 + (35.4 + 20.4i)T + (3.96e3 + 6.85e3i)T^{2} \)
97 \( 1 + (-7.02 + 39.8i)T + (-8.84e3 - 3.21e3i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.91902165795005601438885060251, −13.87928894274968829674755140342, −13.17787487762470231260021246811, −12.13204730585545345598417985861, −10.44761319654681122853666920431, −8.673656772823837132699038281628, −7.895854629753285982683969700626, −6.14005312120654799924888898173, −5.34822171942748539850011891057, −2.26485979238134437549567390238, 2.54443760354670577729033765190, 4.55675581519798417268653461907, 5.70537321916241728598723569154, 8.076408782720419779323826776730, 9.646506546170726374302772556045, 10.46997567847221656283300427835, 11.18137352670377737396444068776, 13.14004942153981720913948077904, 13.82973466868233419891362729756, 14.92817190244522674129892465077

Graph of the $Z$-function along the critical line