L(s) = 1 | + (−1.39 − 0.245i)2-s + (−2.10 + 2.13i)3-s + (1.87 + 0.684i)4-s + (−5.37 − 6.40i)5-s + (3.45 − 2.45i)6-s + (−8.61 + 3.13i)7-s + (−2.44 − 1.41i)8-s + (−0.136 − 8.99i)9-s + (5.91 + 10.2i)10-s + (−4.22 + 5.04i)11-s + (−5.41 + 2.57i)12-s + (1.04 + 5.91i)13-s + (12.7 − 2.25i)14-s + (25.0 + 1.99i)15-s + (3.06 + 2.57i)16-s + (−0.880 + 0.508i)17-s + ⋯ |
L(s) = 1 | + (−0.696 − 0.122i)2-s + (−0.701 + 0.712i)3-s + (0.469 + 0.171i)4-s + (−1.07 − 1.28i)5-s + (0.576 − 0.409i)6-s + (−1.23 + 0.448i)7-s + (−0.306 − 0.176i)8-s + (−0.0151 − 0.999i)9-s + (0.591 + 1.02i)10-s + (−0.384 + 0.458i)11-s + (−0.451 + 0.214i)12-s + (0.0802 + 0.455i)13-s + (0.912 − 0.160i)14-s + (1.66 + 0.133i)15-s + (0.191 + 0.160i)16-s + (−0.0517 + 0.0298i)17-s + ⋯ |
Λ(s)=(=(54s/2ΓC(s)L(s)(−0.974+0.224i)Λ(3−s)
Λ(s)=(=(54s/2ΓC(s+1)L(s)(−0.974+0.224i)Λ(1−s)
Degree: |
2 |
Conductor: |
54
= 2⋅33
|
Sign: |
−0.974+0.224i
|
Analytic conductor: |
1.47139 |
Root analytic conductor: |
1.21301 |
Motivic weight: |
2 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ54(29,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 54, ( :1), −0.974+0.224i)
|
Particular Values
L(23) |
≈ |
0.00539746−0.0474864i |
L(21) |
≈ |
0.00539746−0.0474864i |
L(2) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(1.39+0.245i)T |
| 3 | 1+(2.10−2.13i)T |
good | 5 | 1+(5.37+6.40i)T+(−4.34+24.6i)T2 |
| 7 | 1+(8.61−3.13i)T+(37.5−31.4i)T2 |
| 11 | 1+(4.22−5.04i)T+(−21.0−119.i)T2 |
| 13 | 1+(−1.04−5.91i)T+(−158.+57.8i)T2 |
| 17 | 1+(0.880−0.508i)T+(144.5−250.i)T2 |
| 19 | 1+(−10.5+18.2i)T+(−180.5−312.i)T2 |
| 23 | 1+(7.33−20.1i)T+(−405.−340.i)T2 |
| 29 | 1+(47.7+8.41i)T+(790.+287.i)T2 |
| 31 | 1+(6.20+2.25i)T+(736.+617.i)T2 |
| 37 | 1+(33.2+57.6i)T+(−684.5+1.18e3i)T2 |
| 41 | 1+(−52.2+9.20i)T+(1.57e3−574.i)T2 |
| 43 | 1+(36.3+30.5i)T+(321.+1.82e3i)T2 |
| 47 | 1+(2.23+6.13i)T+(−1.69e3+1.41e3i)T2 |
| 53 | 1−39.7iT−2.80e3T2 |
| 59 | 1+(18.0+21.4i)T+(−604.+3.42e3i)T2 |
| 61 | 1+(−38.6+14.0i)T+(2.85e3−2.39e3i)T2 |
| 67 | 1+(2.57+14.6i)T+(−4.21e3+1.53e3i)T2 |
| 71 | 1+(65.6−37.9i)T+(2.52e3−4.36e3i)T2 |
| 73 | 1+(26.5−45.9i)T+(−2.66e3−4.61e3i)T2 |
| 79 | 1+(14.2−80.6i)T+(−5.86e3−2.13e3i)T2 |
| 83 | 1+(−46.2−8.14i)T+(6.47e3+2.35e3i)T2 |
| 89 | 1+(−20.2−11.7i)T+(3.96e3+6.85e3i)T2 |
| 97 | 1+(−26.8−22.4i)T+(1.63e3+9.26e3i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−15.39272962771982961042377731313, −12.93641441191020690626029479923, −12.12686911878517533131974200275, −11.17620411396599796302021988166, −9.579009143745517561189681981839, −8.991164600612885149918788491906, −7.28546357094058625613403430664, −5.48636438132931184867580122558, −3.85005782524118181190500196780, −0.06063835335364426742464483240,
3.24262616861434414148522131745, 6.12399087120482399586611543335, 7.11019968248089393826613717908, 7.999414546603424601404284804740, 10.13497339378946540719101114062, 10.92139577924473397736773857439, 11.97956887729132234336373694856, 13.22907657519646971922237598288, 14.70035817732095885545443332901, 16.00697145207135820479350126338