Properties

Label 2-54-27.14-c2-0-0
Degree $2$
Conductor $54$
Sign $-0.974 - 0.224i$
Analytic cond. $1.47139$
Root an. cond. $1.21301$
Motivic weight $2$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−1.39 + 0.245i)2-s + (−2.10 − 2.13i)3-s + (1.87 − 0.684i)4-s + (−5.37 + 6.40i)5-s + (3.45 + 2.45i)6-s + (−8.61 − 3.13i)7-s + (−2.44 + 1.41i)8-s + (−0.136 + 8.99i)9-s + (5.91 − 10.2i)10-s + (−4.22 − 5.04i)11-s + (−5.41 − 2.57i)12-s + (1.04 − 5.91i)13-s + (12.7 + 2.25i)14-s + (25.0 − 1.99i)15-s + (3.06 − 2.57i)16-s + (−0.880 − 0.508i)17-s + ⋯
L(s)  = 1  + (−0.696 + 0.122i)2-s + (−0.701 − 0.712i)3-s + (0.469 − 0.171i)4-s + (−1.07 + 1.28i)5-s + (0.576 + 0.409i)6-s + (−1.23 − 0.448i)7-s + (−0.306 + 0.176i)8-s + (−0.0151 + 0.999i)9-s + (0.591 − 1.02i)10-s + (−0.384 − 0.458i)11-s + (−0.451 − 0.214i)12-s + (0.0802 − 0.455i)13-s + (0.912 + 0.160i)14-s + (1.66 − 0.133i)15-s + (0.191 − 0.160i)16-s + (−0.0517 − 0.0298i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 54 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.974 - 0.224i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 54 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.974 - 0.224i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(54\)    =    \(2 \cdot 3^{3}\)
Sign: $-0.974 - 0.224i$
Analytic conductor: \(1.47139\)
Root analytic conductor: \(1.21301\)
Motivic weight: \(2\)
Rational: no
Arithmetic: yes
Character: $\chi_{54} (41, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 54,\ (\ :1),\ -0.974 - 0.224i)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(0.00539746 + 0.0474864i\)
\(L(\frac12)\) \(\approx\) \(0.00539746 + 0.0474864i\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (1.39 - 0.245i)T \)
3 \( 1 + (2.10 + 2.13i)T \)
good5 \( 1 + (5.37 - 6.40i)T + (-4.34 - 24.6i)T^{2} \)
7 \( 1 + (8.61 + 3.13i)T + (37.5 + 31.4i)T^{2} \)
11 \( 1 + (4.22 + 5.04i)T + (-21.0 + 119. i)T^{2} \)
13 \( 1 + (-1.04 + 5.91i)T + (-158. - 57.8i)T^{2} \)
17 \( 1 + (0.880 + 0.508i)T + (144.5 + 250. i)T^{2} \)
19 \( 1 + (-10.5 - 18.2i)T + (-180.5 + 312. i)T^{2} \)
23 \( 1 + (7.33 + 20.1i)T + (-405. + 340. i)T^{2} \)
29 \( 1 + (47.7 - 8.41i)T + (790. - 287. i)T^{2} \)
31 \( 1 + (6.20 - 2.25i)T + (736. - 617. i)T^{2} \)
37 \( 1 + (33.2 - 57.6i)T + (-684.5 - 1.18e3i)T^{2} \)
41 \( 1 + (-52.2 - 9.20i)T + (1.57e3 + 574. i)T^{2} \)
43 \( 1 + (36.3 - 30.5i)T + (321. - 1.82e3i)T^{2} \)
47 \( 1 + (2.23 - 6.13i)T + (-1.69e3 - 1.41e3i)T^{2} \)
53 \( 1 + 39.7iT - 2.80e3T^{2} \)
59 \( 1 + (18.0 - 21.4i)T + (-604. - 3.42e3i)T^{2} \)
61 \( 1 + (-38.6 - 14.0i)T + (2.85e3 + 2.39e3i)T^{2} \)
67 \( 1 + (2.57 - 14.6i)T + (-4.21e3 - 1.53e3i)T^{2} \)
71 \( 1 + (65.6 + 37.9i)T + (2.52e3 + 4.36e3i)T^{2} \)
73 \( 1 + (26.5 + 45.9i)T + (-2.66e3 + 4.61e3i)T^{2} \)
79 \( 1 + (14.2 + 80.6i)T + (-5.86e3 + 2.13e3i)T^{2} \)
83 \( 1 + (-46.2 + 8.14i)T + (6.47e3 - 2.35e3i)T^{2} \)
89 \( 1 + (-20.2 + 11.7i)T + (3.96e3 - 6.85e3i)T^{2} \)
97 \( 1 + (-26.8 + 22.4i)T + (1.63e3 - 9.26e3i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−16.00697145207135820479350126338, −14.70035817732095885545443332901, −13.22907657519646971922237598288, −11.97956887729132234336373694856, −10.92139577924473397736773857439, −10.13497339378946540719101114062, −7.999414546603424601404284804740, −7.11019968248089393826613717908, −6.12399087120482399586611543335, −3.24262616861434414148522131745, 0.06063835335364426742464483240, 3.85005782524118181190500196780, 5.48636438132931184867580122558, 7.28546357094058625613403430664, 8.991164600612885149918788491906, 9.579009143745517561189681981839, 11.17620411396599796302021988166, 12.12686911878517533131974200275, 12.93641441191020690626029479923, 15.39272962771982961042377731313

Graph of the $Z$-function along the critical line