L(s) = 1 | + (−1.39 − 0.245i)2-s + (2.66 − 1.37i)3-s + (1.87 + 0.684i)4-s + (−1.49 − 1.77i)5-s + (−4.05 + 1.26i)6-s + (5.91 − 2.15i)7-s + (−2.44 − 1.41i)8-s + (5.20 − 7.33i)9-s + (1.64 + 2.84i)10-s + (1.00 − 1.20i)11-s + (5.95 − 0.764i)12-s + (1.33 + 7.56i)13-s + (−8.76 + 1.54i)14-s + (−6.43 − 2.68i)15-s + (3.06 + 2.57i)16-s + (−20.1 + 11.6i)17-s + ⋯ |
L(s) = 1 | + (−0.696 − 0.122i)2-s + (0.888 − 0.458i)3-s + (0.469 + 0.171i)4-s + (−0.298 − 0.355i)5-s + (−0.675 + 0.210i)6-s + (0.844 − 0.307i)7-s + (−0.306 − 0.176i)8-s + (0.578 − 0.815i)9-s + (0.164 + 0.284i)10-s + (0.0916 − 0.109i)11-s + (0.495 − 0.0637i)12-s + (0.102 + 0.581i)13-s + (−0.625 + 0.110i)14-s + (−0.428 − 0.179i)15-s + (0.191 + 0.160i)16-s + (−1.18 + 0.684i)17-s + ⋯ |
Λ(s)=(=(54s/2ΓC(s)L(s)(0.750+0.660i)Λ(3−s)
Λ(s)=(=(54s/2ΓC(s+1)L(s)(0.750+0.660i)Λ(1−s)
Degree: |
2 |
Conductor: |
54
= 2⋅33
|
Sign: |
0.750+0.660i
|
Analytic conductor: |
1.47139 |
Root analytic conductor: |
1.21301 |
Motivic weight: |
2 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ54(29,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 54, ( :1), 0.750+0.660i)
|
Particular Values
L(23) |
≈ |
1.03780−0.391894i |
L(21) |
≈ |
1.03780−0.391894i |
L(2) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(1.39+0.245i)T |
| 3 | 1+(−2.66+1.37i)T |
good | 5 | 1+(1.49+1.77i)T+(−4.34+24.6i)T2 |
| 7 | 1+(−5.91+2.15i)T+(37.5−31.4i)T2 |
| 11 | 1+(−1.00+1.20i)T+(−21.0−119.i)T2 |
| 13 | 1+(−1.33−7.56i)T+(−158.+57.8i)T2 |
| 17 | 1+(20.1−11.6i)T+(144.5−250.i)T2 |
| 19 | 1+(15.0−26.1i)T+(−180.5−312.i)T2 |
| 23 | 1+(7.69−21.1i)T+(−405.−340.i)T2 |
| 29 | 1+(−49.0−8.65i)T+(790.+287.i)T2 |
| 31 | 1+(27.8+10.1i)T+(736.+617.i)T2 |
| 37 | 1+(−14.5−25.2i)T+(−684.5+1.18e3i)T2 |
| 41 | 1+(−17.1+3.02i)T+(1.57e3−574.i)T2 |
| 43 | 1+(64.1+53.7i)T+(321.+1.82e3i)T2 |
| 47 | 1+(−11.3−31.1i)T+(−1.69e3+1.41e3i)T2 |
| 53 | 1+86.0iT−2.80e3T2 |
| 59 | 1+(−29.2−34.9i)T+(−604.+3.42e3i)T2 |
| 61 | 1+(−79.4+28.9i)T+(2.85e3−2.39e3i)T2 |
| 67 | 1+(8.80+49.9i)T+(−4.21e3+1.53e3i)T2 |
| 71 | 1+(32.5−18.7i)T+(2.52e3−4.36e3i)T2 |
| 73 | 1+(3.93−6.82i)T+(−2.66e3−4.61e3i)T2 |
| 79 | 1+(12.5−71.1i)T+(−5.86e3−2.13e3i)T2 |
| 83 | 1+(25.4+4.47i)T+(6.47e3+2.35e3i)T2 |
| 89 | 1+(23.4+13.5i)T+(3.96e3+6.85e3i)T2 |
| 97 | 1+(27.0+22.6i)T+(1.63e3+9.26e3i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−14.94089866328298589184029510749, −13.95865412544738781321315496257, −12.66076444745489473456762280086, −11.52931635215837254157840032737, −10.13960870618966698778545021678, −8.647260881240783858309510930375, −8.086325948341846036816438161047, −6.63600865927231771640720021908, −4.07723058900772414390851245447, −1.78401267701721940044924095631,
2.55374762041958283778299267696, 4.68845264259736452791407064947, 6.95406418364898416851889688276, 8.254977594345423952659443509269, 9.064119107212924483221265574706, 10.50824199642014831231108996765, 11.39773471923444296542219603078, 13.15192355988045919847708771907, 14.52793772444276584532682942997, 15.24512312976223084000493504955