Properties

Label 2-54-27.14-c2-0-1
Degree $2$
Conductor $54$
Sign $0.750 - 0.660i$
Analytic cond. $1.47139$
Root an. cond. $1.21301$
Motivic weight $2$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−1.39 + 0.245i)2-s + (2.66 + 1.37i)3-s + (1.87 − 0.684i)4-s + (−1.49 + 1.77i)5-s + (−4.05 − 1.26i)6-s + (5.91 + 2.15i)7-s + (−2.44 + 1.41i)8-s + (5.20 + 7.33i)9-s + (1.64 − 2.84i)10-s + (1.00 + 1.20i)11-s + (5.95 + 0.764i)12-s + (1.33 − 7.56i)13-s + (−8.76 − 1.54i)14-s + (−6.43 + 2.68i)15-s + (3.06 − 2.57i)16-s + (−20.1 − 11.6i)17-s + ⋯
L(s)  = 1  + (−0.696 + 0.122i)2-s + (0.888 + 0.458i)3-s + (0.469 − 0.171i)4-s + (−0.298 + 0.355i)5-s + (−0.675 − 0.210i)6-s + (0.844 + 0.307i)7-s + (−0.306 + 0.176i)8-s + (0.578 + 0.815i)9-s + (0.164 − 0.284i)10-s + (0.0916 + 0.109i)11-s + (0.495 + 0.0637i)12-s + (0.102 − 0.581i)13-s + (−0.625 − 0.110i)14-s + (−0.428 + 0.179i)15-s + (0.191 − 0.160i)16-s + (−1.18 − 0.684i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 54 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.750 - 0.660i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 54 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.750 - 0.660i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(54\)    =    \(2 \cdot 3^{3}\)
Sign: $0.750 - 0.660i$
Analytic conductor: \(1.47139\)
Root analytic conductor: \(1.21301\)
Motivic weight: \(2\)
Rational: no
Arithmetic: yes
Character: $\chi_{54} (41, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 54,\ (\ :1),\ 0.750 - 0.660i)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(1.03780 + 0.391894i\)
\(L(\frac12)\) \(\approx\) \(1.03780 + 0.391894i\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (1.39 - 0.245i)T \)
3 \( 1 + (-2.66 - 1.37i)T \)
good5 \( 1 + (1.49 - 1.77i)T + (-4.34 - 24.6i)T^{2} \)
7 \( 1 + (-5.91 - 2.15i)T + (37.5 + 31.4i)T^{2} \)
11 \( 1 + (-1.00 - 1.20i)T + (-21.0 + 119. i)T^{2} \)
13 \( 1 + (-1.33 + 7.56i)T + (-158. - 57.8i)T^{2} \)
17 \( 1 + (20.1 + 11.6i)T + (144.5 + 250. i)T^{2} \)
19 \( 1 + (15.0 + 26.1i)T + (-180.5 + 312. i)T^{2} \)
23 \( 1 + (7.69 + 21.1i)T + (-405. + 340. i)T^{2} \)
29 \( 1 + (-49.0 + 8.65i)T + (790. - 287. i)T^{2} \)
31 \( 1 + (27.8 - 10.1i)T + (736. - 617. i)T^{2} \)
37 \( 1 + (-14.5 + 25.2i)T + (-684.5 - 1.18e3i)T^{2} \)
41 \( 1 + (-17.1 - 3.02i)T + (1.57e3 + 574. i)T^{2} \)
43 \( 1 + (64.1 - 53.7i)T + (321. - 1.82e3i)T^{2} \)
47 \( 1 + (-11.3 + 31.1i)T + (-1.69e3 - 1.41e3i)T^{2} \)
53 \( 1 - 86.0iT - 2.80e3T^{2} \)
59 \( 1 + (-29.2 + 34.9i)T + (-604. - 3.42e3i)T^{2} \)
61 \( 1 + (-79.4 - 28.9i)T + (2.85e3 + 2.39e3i)T^{2} \)
67 \( 1 + (8.80 - 49.9i)T + (-4.21e3 - 1.53e3i)T^{2} \)
71 \( 1 + (32.5 + 18.7i)T + (2.52e3 + 4.36e3i)T^{2} \)
73 \( 1 + (3.93 + 6.82i)T + (-2.66e3 + 4.61e3i)T^{2} \)
79 \( 1 + (12.5 + 71.1i)T + (-5.86e3 + 2.13e3i)T^{2} \)
83 \( 1 + (25.4 - 4.47i)T + (6.47e3 - 2.35e3i)T^{2} \)
89 \( 1 + (23.4 - 13.5i)T + (3.96e3 - 6.85e3i)T^{2} \)
97 \( 1 + (27.0 - 22.6i)T + (1.63e3 - 9.26e3i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.24512312976223084000493504955, −14.52793772444276584532682942997, −13.15192355988045919847708771907, −11.39773471923444296542219603078, −10.50824199642014831231108996765, −9.064119107212924483221265574706, −8.254977594345423952659443509269, −6.95406418364898416851889688276, −4.68845264259736452791407064947, −2.55374762041958283778299267696, 1.78401267701721940044924095631, 4.07723058900772414390851245447, 6.63600865927231771640720021908, 8.086325948341846036816438161047, 8.647260881240783858309510930375, 10.13960870618966698778545021678, 11.52931635215837254157840032737, 12.66076444745489473456762280086, 13.95865412544738781321315496257, 14.94089866328298589184029510749

Graph of the $Z$-function along the critical line