Properties

Label 2-5328-1.1-c1-0-39
Degree $2$
Conductor $5328$
Sign $1$
Analytic cond. $42.5442$
Root an. cond. $6.52259$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4.29·5-s + 0.828·7-s − 3.56·11-s + 2·13-s + 0.737·17-s + 2.82·19-s + 4.29·23-s + 13.4·25-s + 0.737·29-s − 6.82·31-s + 3.56·35-s − 37-s − 5.03·41-s + 2.82·43-s + 5.03·47-s − 6.31·49-s + 3.56·53-s − 15.3·55-s + 7.86·59-s + 7.65·61-s + 8.59·65-s − 8.82·67-s + 12.1·71-s + 14.8·73-s − 2.95·77-s + 8.48·79-s − 15.7·83-s + ⋯
L(s)  = 1  + 1.92·5-s + 0.313·7-s − 1.07·11-s + 0.554·13-s + 0.178·17-s + 0.648·19-s + 0.896·23-s + 2.69·25-s + 0.136·29-s − 1.22·31-s + 0.602·35-s − 0.164·37-s − 0.786·41-s + 0.431·43-s + 0.734·47-s − 0.901·49-s + 0.489·53-s − 2.06·55-s + 1.02·59-s + 0.980·61-s + 1.06·65-s − 1.07·67-s + 1.44·71-s + 1.73·73-s − 0.336·77-s + 0.954·79-s − 1.72·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 5328 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5328 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(5328\)    =    \(2^{4} \cdot 3^{2} \cdot 37\)
Sign: $1$
Analytic conductor: \(42.5442\)
Root analytic conductor: \(6.52259\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 5328,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.165784528\)
\(L(\frac12)\) \(\approx\) \(3.165784528\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
37 \( 1 + T \)
good5 \( 1 - 4.29T + 5T^{2} \)
7 \( 1 - 0.828T + 7T^{2} \)
11 \( 1 + 3.56T + 11T^{2} \)
13 \( 1 - 2T + 13T^{2} \)
17 \( 1 - 0.737T + 17T^{2} \)
19 \( 1 - 2.82T + 19T^{2} \)
23 \( 1 - 4.29T + 23T^{2} \)
29 \( 1 - 0.737T + 29T^{2} \)
31 \( 1 + 6.82T + 31T^{2} \)
41 \( 1 + 5.03T + 41T^{2} \)
43 \( 1 - 2.82T + 43T^{2} \)
47 \( 1 - 5.03T + 47T^{2} \)
53 \( 1 - 3.56T + 53T^{2} \)
59 \( 1 - 7.86T + 59T^{2} \)
61 \( 1 - 7.65T + 61T^{2} \)
67 \( 1 + 8.82T + 67T^{2} \)
71 \( 1 - 12.1T + 71T^{2} \)
73 \( 1 - 14.8T + 73T^{2} \)
79 \( 1 - 8.48T + 79T^{2} \)
83 \( 1 + 15.7T + 83T^{2} \)
89 \( 1 + 11.4T + 89T^{2} \)
97 \( 1 + 7.65T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.345598349646763143862589098945, −7.34715972407034677233597625712, −6.72228971296591235987199889273, −5.84100956015699275755683512642, −5.36297544752853678557256427609, −4.88969946390402588184835878196, −3.52933146234904830267590787887, −2.64247199657249976136644436465, −1.93787951646035408450995947282, −1.01314474752714126493460891235, 1.01314474752714126493460891235, 1.93787951646035408450995947282, 2.64247199657249976136644436465, 3.52933146234904830267590787887, 4.88969946390402588184835878196, 5.36297544752853678557256427609, 5.84100956015699275755683512642, 6.72228971296591235987199889273, 7.34715972407034677233597625712, 8.345598349646763143862589098945

Graph of the $Z$-function along the critical line