Properties

Label 5328.2.a.br
Level $5328$
Weight $2$
Character orbit 5328.a
Self dual yes
Analytic conductor $42.544$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [5328,2,Mod(1,5328)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("5328.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(5328, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 5328 = 2^{4} \cdot 3^{2} \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5328.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,0,0,0,-8,0,0,0,0,0,8,0,0,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(19)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(42.5442941969\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: 4.4.7168.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 6x^{2} + 7 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: no (minimal twist has level 1332)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_1 q^{5} + ( - \beta_{3} - 2) q^{7} - \beta_{2} q^{11} + 2 q^{13} + ( - \beta_{2} + \beta_1) q^{17} - \beta_{3} q^{19} + \beta_1 q^{23} + ( - 3 \beta_{3} + 5) q^{25} + ( - \beta_{2} + \beta_1) q^{29}+ \cdots + (2 \beta_{3} - 2) q^{97}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 8 q^{7} + 8 q^{13} + 20 q^{25} - 16 q^{31} - 4 q^{37} + 20 q^{49} - 16 q^{55} + 8 q^{61} - 24 q^{67} + 48 q^{73} + 24 q^{85} - 16 q^{91} - 8 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - 6x^{2} + 7 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu^{3} - 5\nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( 2\nu^{3} - 6\nu \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( 2\nu^{2} - 6 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{2} - 2\beta_1 ) / 4 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( \beta_{3} + 6 ) / 2 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( 5\beta_{2} - 6\beta_1 ) / 4 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
1.25928
2.10100
−2.10100
−1.25928
0 0 0 −4.29945 0 0.828427 0 0 0
1.2 0 0 0 −1.23074 0 −4.82843 0 0 0
1.3 0 0 0 1.23074 0 −4.82843 0 0 0
1.4 0 0 0 4.29945 0 0.828427 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(3\) \( +1 \)
\(37\) \( +1 \)

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 5328.2.a.br 4
3.b odd 2 1 inner 5328.2.a.br 4
4.b odd 2 1 1332.2.a.i 4
12.b even 2 1 1332.2.a.i 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1332.2.a.i 4 4.b odd 2 1
1332.2.a.i 4 12.b even 2 1
5328.2.a.br 4 1.a even 1 1 trivial
5328.2.a.br 4 3.b odd 2 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(5328))\):

\( T_{5}^{4} - 20T_{5}^{2} + 28 \) Copy content Toggle raw display
\( T_{7}^{2} + 4T_{7} - 4 \) Copy content Toggle raw display
\( T_{11}^{4} - 48T_{11}^{2} + 448 \) Copy content Toggle raw display
\( T_{13} - 2 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( T^{4} \) Copy content Toggle raw display
$5$ \( T^{4} - 20T^{2} + 28 \) Copy content Toggle raw display
$7$ \( (T^{2} + 4 T - 4)^{2} \) Copy content Toggle raw display
$11$ \( T^{4} - 48T^{2} + 448 \) Copy content Toggle raw display
$13$ \( (T - 2)^{4} \) Copy content Toggle raw display
$17$ \( T^{4} - 52T^{2} + 28 \) Copy content Toggle raw display
$19$ \( (T^{2} - 8)^{2} \) Copy content Toggle raw display
$23$ \( T^{4} - 20T^{2} + 28 \) Copy content Toggle raw display
$29$ \( T^{4} - 52T^{2} + 28 \) Copy content Toggle raw display
$31$ \( (T^{2} + 8 T + 8)^{2} \) Copy content Toggle raw display
$37$ \( (T + 1)^{4} \) Copy content Toggle raw display
$41$ \( T^{4} - 96T^{2} + 1792 \) Copy content Toggle raw display
$43$ \( (T^{2} - 8)^{2} \) Copy content Toggle raw display
$47$ \( T^{4} - 96T^{2} + 1792 \) Copy content Toggle raw display
$53$ \( T^{4} - 48T^{2} + 448 \) Copy content Toggle raw display
$59$ \( T^{4} - 84T^{2} + 1372 \) Copy content Toggle raw display
$61$ \( (T^{2} - 4 T - 28)^{2} \) Copy content Toggle raw display
$67$ \( (T^{2} + 12 T + 28)^{2} \) Copy content Toggle raw display
$71$ \( T^{4} - 160T^{2} + 1792 \) Copy content Toggle raw display
$73$ \( (T^{2} - 24 T + 136)^{2} \) Copy content Toggle raw display
$79$ \( (T^{2} - 72)^{2} \) Copy content Toggle raw display
$83$ \( T^{4} - 336 T^{2} + 21952 \) Copy content Toggle raw display
$89$ \( T^{4} - 244 T^{2} + 14812 \) Copy content Toggle raw display
$97$ \( (T^{2} + 4 T - 28)^{2} \) Copy content Toggle raw display
show more
show less