Properties

Label 2-5328-1.1-c1-0-23
Degree $2$
Conductor $5328$
Sign $1$
Analytic cond. $42.5442$
Root an. cond. $6.52259$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.23·5-s − 4.82·7-s + 5.94·11-s + 2·13-s + 7.17·17-s − 2.82·19-s + 1.23·23-s − 3.48·25-s + 7.17·29-s − 1.17·31-s − 5.94·35-s − 37-s − 8.40·41-s − 2.82·43-s + 8.40·47-s + 16.3·49-s − 5.94·53-s + 7.31·55-s − 4.71·59-s − 3.65·61-s + 2.46·65-s − 3.17·67-s − 3.48·71-s + 9.17·73-s − 28.6·77-s − 8.48·79-s + 9.42·83-s + ⋯
L(s)  = 1  + 0.550·5-s − 1.82·7-s + 1.79·11-s + 0.554·13-s + 1.73·17-s − 0.648·19-s + 0.256·23-s − 0.697·25-s + 1.33·29-s − 0.210·31-s − 1.00·35-s − 0.164·37-s − 1.31·41-s − 0.431·43-s + 1.22·47-s + 2.33·49-s − 0.816·53-s + 0.986·55-s − 0.613·59-s − 0.468·61-s + 0.305·65-s − 0.387·67-s − 0.413·71-s + 1.07·73-s − 3.26·77-s − 0.954·79-s + 1.03·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 5328 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5328 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(5328\)    =    \(2^{4} \cdot 3^{2} \cdot 37\)
Sign: $1$
Analytic conductor: \(42.5442\)
Root analytic conductor: \(6.52259\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 5328,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.054440274\)
\(L(\frac12)\) \(\approx\) \(2.054440274\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
37 \( 1 + T \)
good5 \( 1 - 1.23T + 5T^{2} \)
7 \( 1 + 4.82T + 7T^{2} \)
11 \( 1 - 5.94T + 11T^{2} \)
13 \( 1 - 2T + 13T^{2} \)
17 \( 1 - 7.17T + 17T^{2} \)
19 \( 1 + 2.82T + 19T^{2} \)
23 \( 1 - 1.23T + 23T^{2} \)
29 \( 1 - 7.17T + 29T^{2} \)
31 \( 1 + 1.17T + 31T^{2} \)
41 \( 1 + 8.40T + 41T^{2} \)
43 \( 1 + 2.82T + 43T^{2} \)
47 \( 1 - 8.40T + 47T^{2} \)
53 \( 1 + 5.94T + 53T^{2} \)
59 \( 1 + 4.71T + 59T^{2} \)
61 \( 1 + 3.65T + 61T^{2} \)
67 \( 1 + 3.17T + 67T^{2} \)
71 \( 1 + 3.48T + 71T^{2} \)
73 \( 1 - 9.17T + 73T^{2} \)
79 \( 1 + 8.48T + 79T^{2} \)
83 \( 1 - 9.42T + 83T^{2} \)
89 \( 1 - 10.6T + 89T^{2} \)
97 \( 1 - 3.65T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.321402106785139870473353149731, −7.26929997218385697023580350268, −6.51295198582333177580394915435, −6.23188400781860728952860685549, −5.56037265450971955436547859215, −4.33784772265256096138434633028, −3.49656547979114258580612910636, −3.12937470512590588794776083798, −1.78800299782540312422183563415, −0.798817168927063699736813848234, 0.798817168927063699736813848234, 1.78800299782540312422183563415, 3.12937470512590588794776083798, 3.49656547979114258580612910636, 4.33784772265256096138434633028, 5.56037265450971955436547859215, 6.23188400781860728952860685549, 6.51295198582333177580394915435, 7.26929997218385697023580350268, 8.321402106785139870473353149731

Graph of the $Z$-function along the critical line