Properties

Label 2-52800-1.1-c1-0-11
Degree $2$
Conductor $52800$
Sign $1$
Analytic cond. $421.610$
Root an. cond. $20.5331$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s + 9-s − 11-s − 2·13-s − 2·17-s − 4·19-s − 27-s + 2·29-s + 33-s − 2·37-s + 2·39-s + 2·41-s + 12·43-s + 8·47-s − 7·49-s + 2·51-s + 6·53-s + 4·57-s − 12·59-s − 6·61-s − 4·67-s + 6·73-s + 16·79-s + 81-s − 4·83-s − 2·87-s + 10·89-s + ⋯
L(s)  = 1  − 0.577·3-s + 1/3·9-s − 0.301·11-s − 0.554·13-s − 0.485·17-s − 0.917·19-s − 0.192·27-s + 0.371·29-s + 0.174·33-s − 0.328·37-s + 0.320·39-s + 0.312·41-s + 1.82·43-s + 1.16·47-s − 49-s + 0.280·51-s + 0.824·53-s + 0.529·57-s − 1.56·59-s − 0.768·61-s − 0.488·67-s + 0.702·73-s + 1.80·79-s + 1/9·81-s − 0.439·83-s − 0.214·87-s + 1.05·89-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 52800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 52800 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(52800\)    =    \(2^{6} \cdot 3 \cdot 5^{2} \cdot 11\)
Sign: $1$
Analytic conductor: \(421.610\)
Root analytic conductor: \(20.5331\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 52800,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.031450436\)
\(L(\frac12)\) \(\approx\) \(1.031450436\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
5 \( 1 \)
11 \( 1 + T \)
good7 \( 1 + p T^{2} \) 1.7.a
13 \( 1 + 2 T + p T^{2} \) 1.13.c
17 \( 1 + 2 T + p T^{2} \) 1.17.c
19 \( 1 + 4 T + p T^{2} \) 1.19.e
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 - 2 T + p T^{2} \) 1.29.ac
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 - 2 T + p T^{2} \) 1.41.ac
43 \( 1 - 12 T + p T^{2} \) 1.43.am
47 \( 1 - 8 T + p T^{2} \) 1.47.ai
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 + 12 T + p T^{2} \) 1.59.m
61 \( 1 + 6 T + p T^{2} \) 1.61.g
67 \( 1 + 4 T + p T^{2} \) 1.67.e
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 - 6 T + p T^{2} \) 1.73.ag
79 \( 1 - 16 T + p T^{2} \) 1.79.aq
83 \( 1 + 4 T + p T^{2} \) 1.83.e
89 \( 1 - 10 T + p T^{2} \) 1.89.ak
97 \( 1 + 2 T + p T^{2} \) 1.97.c
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.47009010195324, −13.89431325866327, −13.45206617798008, −12.78835475813091, −12.37876319181358, −12.05146963341283, −11.31469608817109, −10.70334858609611, −10.61120381309907, −9.877073160751952, −9.155686307585815, −8.946741565435996, −7.992588706748152, −7.689154755757491, −6.987786457942602, −6.452624594723850, −5.955059823521374, −5.340499193700934, −4.685513230069237, −4.284744273204795, −3.565838672565764, −2.639677933860693, −2.206999979572408, −1.279182617856330, −0.3801190453498442, 0.3801190453498442, 1.279182617856330, 2.206999979572408, 2.639677933860693, 3.565838672565764, 4.284744273204795, 4.685513230069237, 5.340499193700934, 5.955059823521374, 6.452624594723850, 6.987786457942602, 7.689154755757491, 7.992588706748152, 8.946741565435996, 9.155686307585815, 9.877073160751952, 10.61120381309907, 10.70334858609611, 11.31469608817109, 12.05146963341283, 12.37876319181358, 12.78835475813091, 13.45206617798008, 13.89431325866327, 14.47009010195324

Graph of the $Z$-function along the critical line