L(s) = 1 | − 4.70i·2-s + 3i·3-s − 14.1·4-s + 14.1·6-s − 7i·7-s + 28.7i·8-s − 9·9-s + 24.5·11-s − 42.3i·12-s − 35.0i·13-s − 32.9·14-s + 22.1·16-s + 18.4i·17-s + 42.3i·18-s + 67.4·19-s + ⋯ |
L(s) = 1 | − 1.66i·2-s + 0.577i·3-s − 1.76·4-s + 0.959·6-s − 0.377i·7-s + 1.26i·8-s − 0.333·9-s + 0.674·11-s − 1.01i·12-s − 0.747i·13-s − 0.628·14-s + 0.345·16-s + 0.262i·17-s + 0.554i·18-s + 0.813·19-s + ⋯ |
Λ(s)=(=(525s/2ΓC(s)L(s)(−0.447−0.894i)Λ(4−s)
Λ(s)=(=(525s/2ΓC(s+3/2)L(s)(−0.447−0.894i)Λ(1−s)
Degree: |
2 |
Conductor: |
525
= 3⋅52⋅7
|
Sign: |
−0.447−0.894i
|
Analytic conductor: |
30.9760 |
Root analytic conductor: |
5.56560 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ525(274,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 525, ( :3/2), −0.447−0.894i)
|
Particular Values
L(2) |
≈ |
0.7114551850 |
L(21) |
≈ |
0.7114551850 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1−3iT |
| 5 | 1 |
| 7 | 1+7iT |
good | 2 | 1+4.70iT−8T2 |
| 11 | 1−24.5T+1.33e3T2 |
| 13 | 1+35.0iT−2.19e3T2 |
| 17 | 1−18.4iT−4.91e3T2 |
| 19 | 1−67.4T+6.85e3T2 |
| 23 | 1+145.iT−1.21e4T2 |
| 29 | 1+214.T+2.43e4T2 |
| 31 | 1+88.6T+2.97e4T2 |
| 37 | 1+162.iT−5.06e4T2 |
| 41 | 1+337.T+6.89e4T2 |
| 43 | 1−122.iT−7.95e4T2 |
| 47 | 1+354.iT−1.03e5T2 |
| 53 | 1−676.iT−1.48e5T2 |
| 59 | 1+501.T+2.05e5T2 |
| 61 | 1+708.T+2.26e5T2 |
| 67 | 1−907.iT−3.00e5T2 |
| 71 | 1−430.T+3.57e5T2 |
| 73 | 1−41.3iT−3.89e5T2 |
| 79 | 1+890.T+4.93e5T2 |
| 83 | 1+1.05e3iT−5.71e5T2 |
| 89 | 1+1.47e3T+7.04e5T2 |
| 97 | 1+555.iT−9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.11742334010186195950749351207, −9.309617137185065630889621205172, −8.557009241930014478857564783659, −7.25097390259322107168228324747, −5.78314586977567984563206079364, −4.60491514471741011187902883542, −3.76250317392425434015619871047, −2.90805334431274191067107390342, −1.53153012872217405322416020043, −0.22118455616605298102314122836,
1.66175388036912982330645776556, 3.54077301345161542454763528334, 4.91664470153598504592470692001, 5.74711471816309571751595919773, 6.61047134681383072474328247354, 7.32096340095898246774710912719, 8.060201619353959982714263624243, 9.124070215834131592812891800468, 9.529287500260280904841921732733, 11.27739763172448817903954395878