L(s) = 1 | + 4.70i·2-s − 3i·3-s − 14.1·4-s + 14.1·6-s + 7i·7-s − 28.7i·8-s − 9·9-s + 24.5·11-s + 42.3i·12-s + 35.0i·13-s − 32.9·14-s + 22.1·16-s − 18.4i·17-s − 42.3i·18-s + 67.4·19-s + ⋯ |
L(s) = 1 | + 1.66i·2-s − 0.577i·3-s − 1.76·4-s + 0.959·6-s + 0.377i·7-s − 1.26i·8-s − 0.333·9-s + 0.674·11-s + 1.01i·12-s + 0.747i·13-s − 0.628·14-s + 0.345·16-s − 0.262i·17-s − 0.554i·18-s + 0.813·19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 525 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.447 + 0.894i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 525 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (-0.447 + 0.894i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(0.7114551850\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.7114551850\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + 3iT \) |
| 5 | \( 1 \) |
| 7 | \( 1 - 7iT \) |
good | 2 | \( 1 - 4.70iT - 8T^{2} \) |
| 11 | \( 1 - 24.5T + 1.33e3T^{2} \) |
| 13 | \( 1 - 35.0iT - 2.19e3T^{2} \) |
| 17 | \( 1 + 18.4iT - 4.91e3T^{2} \) |
| 19 | \( 1 - 67.4T + 6.85e3T^{2} \) |
| 23 | \( 1 - 145. iT - 1.21e4T^{2} \) |
| 29 | \( 1 + 214.T + 2.43e4T^{2} \) |
| 31 | \( 1 + 88.6T + 2.97e4T^{2} \) |
| 37 | \( 1 - 162. iT - 5.06e4T^{2} \) |
| 41 | \( 1 + 337.T + 6.89e4T^{2} \) |
| 43 | \( 1 + 122. iT - 7.95e4T^{2} \) |
| 47 | \( 1 - 354. iT - 1.03e5T^{2} \) |
| 53 | \( 1 + 676. iT - 1.48e5T^{2} \) |
| 59 | \( 1 + 501.T + 2.05e5T^{2} \) |
| 61 | \( 1 + 708.T + 2.26e5T^{2} \) |
| 67 | \( 1 + 907. iT - 3.00e5T^{2} \) |
| 71 | \( 1 - 430.T + 3.57e5T^{2} \) |
| 73 | \( 1 + 41.3iT - 3.89e5T^{2} \) |
| 79 | \( 1 + 890.T + 4.93e5T^{2} \) |
| 83 | \( 1 - 1.05e3iT - 5.71e5T^{2} \) |
| 89 | \( 1 + 1.47e3T + 7.04e5T^{2} \) |
| 97 | \( 1 - 555. iT - 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.27739763172448817903954395878, −9.529287500260280904841921732733, −9.124070215834131592812891800468, −8.060201619353959982714263624243, −7.32096340095898246774710912719, −6.61047134681383072474328247354, −5.74711471816309571751595919773, −4.91664470153598504592470692001, −3.54077301345161542454763528334, −1.66175388036912982330645776556,
0.22118455616605298102314122836, 1.53153012872217405322416020043, 2.90805334431274191067107390342, 3.76250317392425434015619871047, 4.60491514471741011187902883542, 5.78314586977567984563206079364, 7.25097390259322107168228324747, 8.557009241930014478857564783659, 9.309617137185065630889621205172, 10.11742334010186195950749351207