L(s) = 1 | + 1.37·2-s + 1.23·3-s − 0.115·4-s + 1.69·6-s − 2.43·7-s − 2.90·8-s − 1.47·9-s − 11-s − 0.142·12-s + 4.84·13-s − 3.33·14-s − 3.75·16-s + 1.04·17-s − 2.01·18-s + 19-s − 3.00·21-s − 1.37·22-s − 0.377·23-s − 3.59·24-s + 6.65·26-s − 5.52·27-s + 0.280·28-s + 4.50·29-s + 4.76·31-s + 0.652·32-s − 1.23·33-s + 1.42·34-s + ⋯ |
L(s) = 1 | + 0.970·2-s + 0.713·3-s − 0.0577·4-s + 0.692·6-s − 0.919·7-s − 1.02·8-s − 0.490·9-s − 0.301·11-s − 0.0412·12-s + 1.34·13-s − 0.892·14-s − 0.938·16-s + 0.252·17-s − 0.476·18-s + 0.229·19-s − 0.656·21-s − 0.292·22-s − 0.0786·23-s − 0.732·24-s + 1.30·26-s − 1.06·27-s + 0.0530·28-s + 0.836·29-s + 0.855·31-s + 0.115·32-s − 0.215·33-s + 0.244·34-s + ⋯ |
Λ(s)=(=(5225s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(5225s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
2.914461667 |
L(21) |
≈ |
2.914461667 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1 |
| 11 | 1+T |
| 19 | 1−T |
good | 2 | 1−1.37T+2T2 |
| 3 | 1−1.23T+3T2 |
| 7 | 1+2.43T+7T2 |
| 13 | 1−4.84T+13T2 |
| 17 | 1−1.04T+17T2 |
| 23 | 1+0.377T+23T2 |
| 29 | 1−4.50T+29T2 |
| 31 | 1−4.76T+31T2 |
| 37 | 1+3.01T+37T2 |
| 41 | 1−0.790T+41T2 |
| 43 | 1−7.46T+43T2 |
| 47 | 1−9.67T+47T2 |
| 53 | 1−12.7T+53T2 |
| 59 | 1−1.32T+59T2 |
| 61 | 1+5.58T+61T2 |
| 67 | 1−1.20T+67T2 |
| 71 | 1+0.259T+71T2 |
| 73 | 1−6.27T+73T2 |
| 79 | 1+9.16T+79T2 |
| 83 | 1−14.2T+83T2 |
| 89 | 1+1.23T+89T2 |
| 97 | 1+2.95T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.400474448760444489680562618472, −7.47771111024756857991928763615, −6.47875614586230447299819915545, −5.96159146123688397159616512443, −5.36232833314700783684007596902, −4.31135697734167401105240837139, −3.64153213588919939963380827169, −3.07974878828912326409243293296, −2.39941133230605221911362720594, −0.75514681611091505281583979759,
0.75514681611091505281583979759, 2.39941133230605221911362720594, 3.07974878828912326409243293296, 3.64153213588919939963380827169, 4.31135697734167401105240837139, 5.36232833314700783684007596902, 5.96159146123688397159616512443, 6.47875614586230447299819915545, 7.47771111024756857991928763615, 8.400474448760444489680562618472