Properties

Label 2-5225-1.1-c1-0-84
Degree $2$
Conductor $5225$
Sign $1$
Analytic cond. $41.7218$
Root an. cond. $6.45924$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.37·2-s + 1.23·3-s − 0.115·4-s + 1.69·6-s − 2.43·7-s − 2.90·8-s − 1.47·9-s − 11-s − 0.142·12-s + 4.84·13-s − 3.33·14-s − 3.75·16-s + 1.04·17-s − 2.01·18-s + 19-s − 3.00·21-s − 1.37·22-s − 0.377·23-s − 3.59·24-s + 6.65·26-s − 5.52·27-s + 0.280·28-s + 4.50·29-s + 4.76·31-s + 0.652·32-s − 1.23·33-s + 1.42·34-s + ⋯
L(s)  = 1  + 0.970·2-s + 0.713·3-s − 0.0577·4-s + 0.692·6-s − 0.919·7-s − 1.02·8-s − 0.490·9-s − 0.301·11-s − 0.0412·12-s + 1.34·13-s − 0.892·14-s − 0.938·16-s + 0.252·17-s − 0.476·18-s + 0.229·19-s − 0.656·21-s − 0.292·22-s − 0.0786·23-s − 0.732·24-s + 1.30·26-s − 1.06·27-s + 0.0530·28-s + 0.836·29-s + 0.855·31-s + 0.115·32-s − 0.215·33-s + 0.244·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 5225 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5225 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(5225\)    =    \(5^{2} \cdot 11 \cdot 19\)
Sign: $1$
Analytic conductor: \(41.7218\)
Root analytic conductor: \(6.45924\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 5225,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.914461667\)
\(L(\frac12)\) \(\approx\) \(2.914461667\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 \)
11 \( 1 + T \)
19 \( 1 - T \)
good2 \( 1 - 1.37T + 2T^{2} \)
3 \( 1 - 1.23T + 3T^{2} \)
7 \( 1 + 2.43T + 7T^{2} \)
13 \( 1 - 4.84T + 13T^{2} \)
17 \( 1 - 1.04T + 17T^{2} \)
23 \( 1 + 0.377T + 23T^{2} \)
29 \( 1 - 4.50T + 29T^{2} \)
31 \( 1 - 4.76T + 31T^{2} \)
37 \( 1 + 3.01T + 37T^{2} \)
41 \( 1 - 0.790T + 41T^{2} \)
43 \( 1 - 7.46T + 43T^{2} \)
47 \( 1 - 9.67T + 47T^{2} \)
53 \( 1 - 12.7T + 53T^{2} \)
59 \( 1 - 1.32T + 59T^{2} \)
61 \( 1 + 5.58T + 61T^{2} \)
67 \( 1 - 1.20T + 67T^{2} \)
71 \( 1 + 0.259T + 71T^{2} \)
73 \( 1 - 6.27T + 73T^{2} \)
79 \( 1 + 9.16T + 79T^{2} \)
83 \( 1 - 14.2T + 83T^{2} \)
89 \( 1 + 1.23T + 89T^{2} \)
97 \( 1 + 2.95T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.400474448760444489680562618472, −7.47771111024756857991928763615, −6.47875614586230447299819915545, −5.96159146123688397159616512443, −5.36232833314700783684007596902, −4.31135697734167401105240837139, −3.64153213588919939963380827169, −3.07974878828912326409243293296, −2.39941133230605221911362720594, −0.75514681611091505281583979759, 0.75514681611091505281583979759, 2.39941133230605221911362720594, 3.07974878828912326409243293296, 3.64153213588919939963380827169, 4.31135697734167401105240837139, 5.36232833314700783684007596902, 5.96159146123688397159616512443, 6.47875614586230447299819915545, 7.47771111024756857991928763615, 8.400474448760444489680562618472

Graph of the $Z$-function along the critical line