L(s) = 1 | + 2.40·2-s + 1.94·3-s + 3.78·4-s + 4.68·6-s − 0.665·7-s + 4.28·8-s + 0.794·9-s + 11-s + 7.36·12-s + 3.05·13-s − 1.59·14-s + 2.73·16-s + 4.49·17-s + 1.91·18-s + 19-s − 1.29·21-s + 2.40·22-s + 0.205·23-s + 8.34·24-s + 7.34·26-s − 4.29·27-s − 2.51·28-s + 0.0417·29-s + 6.76·31-s − 1.98·32-s + 1.94·33-s + 10.8·34-s + ⋯ |
L(s) = 1 | + 1.70·2-s + 1.12·3-s + 1.89·4-s + 1.91·6-s − 0.251·7-s + 1.51·8-s + 0.264·9-s + 0.301·11-s + 2.12·12-s + 0.847·13-s − 0.427·14-s + 0.683·16-s + 1.08·17-s + 0.450·18-s + 0.229·19-s − 0.282·21-s + 0.512·22-s + 0.0427·23-s + 1.70·24-s + 1.44·26-s − 0.826·27-s − 0.475·28-s + 0.00776·29-s + 1.21·31-s − 0.351·32-s + 0.339·33-s + 1.85·34-s + ⋯ |
Λ(s)=(=(5225s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(5225s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
8.711603013 |
L(21) |
≈ |
8.711603013 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1 |
| 11 | 1−T |
| 19 | 1−T |
good | 2 | 1−2.40T+2T2 |
| 3 | 1−1.94T+3T2 |
| 7 | 1+0.665T+7T2 |
| 13 | 1−3.05T+13T2 |
| 17 | 1−4.49T+17T2 |
| 23 | 1−0.205T+23T2 |
| 29 | 1−0.0417T+29T2 |
| 31 | 1−6.76T+31T2 |
| 37 | 1−7.60T+37T2 |
| 41 | 1−5.90T+41T2 |
| 43 | 1+1.77T+43T2 |
| 47 | 1+2.44T+47T2 |
| 53 | 1+3.34T+53T2 |
| 59 | 1−7.44T+59T2 |
| 61 | 1+11.7T+61T2 |
| 67 | 1+7.55T+67T2 |
| 71 | 1−2.36T+71T2 |
| 73 | 1+1.57T+73T2 |
| 79 | 1+4.66T+79T2 |
| 83 | 1−12.5T+83T2 |
| 89 | 1−6.06T+89T2 |
| 97 | 1−8.44T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.960490005246633530200480165702, −7.51758806371555721984659380455, −6.37872626274492668439207894176, −6.09401848432568600196876795821, −5.16987283543241482642315138717, −4.34288478887783214877913549269, −3.61080796841016430494597906193, −3.11313160669686981201942092390, −2.44870774196983349879227527548, −1.31796405591483271314376179127,
1.31796405591483271314376179127, 2.44870774196983349879227527548, 3.11313160669686981201942092390, 3.61080796841016430494597906193, 4.34288478887783214877913549269, 5.16987283543241482642315138717, 6.09401848432568600196876795821, 6.37872626274492668439207894176, 7.51758806371555721984659380455, 7.960490005246633530200480165702