L(s) = 1 | − 2.22·2-s + 1.47·3-s + 2.96·4-s − 3.29·6-s + 4.42·7-s − 2.15·8-s − 0.812·9-s − 11-s + 4.38·12-s + 3.92·13-s − 9.86·14-s − 1.13·16-s + 1.61·17-s + 1.81·18-s + 19-s + 6.54·21-s + 2.22·22-s − 0.113·23-s − 3.18·24-s − 8.75·26-s − 5.63·27-s + 13.1·28-s + 1.08·29-s − 4.17·31-s + 6.83·32-s − 1.47·33-s − 3.59·34-s + ⋯ |
L(s) = 1 | − 1.57·2-s + 0.853·3-s + 1.48·4-s − 1.34·6-s + 1.67·7-s − 0.762·8-s − 0.270·9-s − 0.301·11-s + 1.26·12-s + 1.08·13-s − 2.63·14-s − 0.282·16-s + 0.391·17-s + 0.427·18-s + 0.229·19-s + 1.42·21-s + 0.475·22-s − 0.0236·23-s − 0.650·24-s − 1.71·26-s − 1.08·27-s + 2.48·28-s + 0.201·29-s − 0.749·31-s + 1.20·32-s − 0.257·33-s − 0.617·34-s + ⋯ |
Λ(s)=(=(5225s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(5225s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
1.563249248 |
L(21) |
≈ |
1.563249248 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1 |
| 11 | 1+T |
| 19 | 1−T |
good | 2 | 1+2.22T+2T2 |
| 3 | 1−1.47T+3T2 |
| 7 | 1−4.42T+7T2 |
| 13 | 1−3.92T+13T2 |
| 17 | 1−1.61T+17T2 |
| 23 | 1+0.113T+23T2 |
| 29 | 1−1.08T+29T2 |
| 31 | 1+4.17T+31T2 |
| 37 | 1−5.75T+37T2 |
| 41 | 1−4.26T+41T2 |
| 43 | 1+3.62T+43T2 |
| 47 | 1−6.39T+47T2 |
| 53 | 1+12.0T+53T2 |
| 59 | 1−0.883T+59T2 |
| 61 | 1−3.77T+61T2 |
| 67 | 1−12.2T+67T2 |
| 71 | 1−4.28T+71T2 |
| 73 | 1−1.92T+73T2 |
| 79 | 1+7.81T+79T2 |
| 83 | 1−3.33T+83T2 |
| 89 | 1+11.9T+89T2 |
| 97 | 1−13.3T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.336590790983827096246798319118, −7.78327708317457051889673808428, −7.37155386237562960494025484193, −6.23611808900795718302292538494, −5.39706959678756601572935967398, −4.46476869028552449083531091576, −3.46542153791902390847598288143, −2.40782520568370742672461272781, −1.73295852480627462967350414203, −0.871098282183441681635004060858,
0.871098282183441681635004060858, 1.73295852480627462967350414203, 2.40782520568370742672461272781, 3.46542153791902390847598288143, 4.46476869028552449083531091576, 5.39706959678756601572935967398, 6.23611808900795718302292538494, 7.37155386237562960494025484193, 7.78327708317457051889673808428, 8.336590790983827096246798319118