Properties

Label 2-5225-1.1-c1-0-120
Degree $2$
Conductor $5225$
Sign $1$
Analytic cond. $41.7218$
Root an. cond. $6.45924$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2.22·2-s + 1.47·3-s + 2.96·4-s − 3.29·6-s + 4.42·7-s − 2.15·8-s − 0.812·9-s − 11-s + 4.38·12-s + 3.92·13-s − 9.86·14-s − 1.13·16-s + 1.61·17-s + 1.81·18-s + 19-s + 6.54·21-s + 2.22·22-s − 0.113·23-s − 3.18·24-s − 8.75·26-s − 5.63·27-s + 13.1·28-s + 1.08·29-s − 4.17·31-s + 6.83·32-s − 1.47·33-s − 3.59·34-s + ⋯
L(s)  = 1  − 1.57·2-s + 0.853·3-s + 1.48·4-s − 1.34·6-s + 1.67·7-s − 0.762·8-s − 0.270·9-s − 0.301·11-s + 1.26·12-s + 1.08·13-s − 2.63·14-s − 0.282·16-s + 0.391·17-s + 0.427·18-s + 0.229·19-s + 1.42·21-s + 0.475·22-s − 0.0236·23-s − 0.650·24-s − 1.71·26-s − 1.08·27-s + 2.48·28-s + 0.201·29-s − 0.749·31-s + 1.20·32-s − 0.257·33-s − 0.617·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 5225 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5225 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(5225\)    =    \(5^{2} \cdot 11 \cdot 19\)
Sign: $1$
Analytic conductor: \(41.7218\)
Root analytic conductor: \(6.45924\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 5225,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.563249248\)
\(L(\frac12)\) \(\approx\) \(1.563249248\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 \)
11 \( 1 + T \)
19 \( 1 - T \)
good2 \( 1 + 2.22T + 2T^{2} \)
3 \( 1 - 1.47T + 3T^{2} \)
7 \( 1 - 4.42T + 7T^{2} \)
13 \( 1 - 3.92T + 13T^{2} \)
17 \( 1 - 1.61T + 17T^{2} \)
23 \( 1 + 0.113T + 23T^{2} \)
29 \( 1 - 1.08T + 29T^{2} \)
31 \( 1 + 4.17T + 31T^{2} \)
37 \( 1 - 5.75T + 37T^{2} \)
41 \( 1 - 4.26T + 41T^{2} \)
43 \( 1 + 3.62T + 43T^{2} \)
47 \( 1 - 6.39T + 47T^{2} \)
53 \( 1 + 12.0T + 53T^{2} \)
59 \( 1 - 0.883T + 59T^{2} \)
61 \( 1 - 3.77T + 61T^{2} \)
67 \( 1 - 12.2T + 67T^{2} \)
71 \( 1 - 4.28T + 71T^{2} \)
73 \( 1 - 1.92T + 73T^{2} \)
79 \( 1 + 7.81T + 79T^{2} \)
83 \( 1 - 3.33T + 83T^{2} \)
89 \( 1 + 11.9T + 89T^{2} \)
97 \( 1 - 13.3T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.336590790983827096246798319118, −7.78327708317457051889673808428, −7.37155386237562960494025484193, −6.23611808900795718302292538494, −5.39706959678756601572935967398, −4.46476869028552449083531091576, −3.46542153791902390847598288143, −2.40782520568370742672461272781, −1.73295852480627462967350414203, −0.871098282183441681635004060858, 0.871098282183441681635004060858, 1.73295852480627462967350414203, 2.40782520568370742672461272781, 3.46542153791902390847598288143, 4.46476869028552449083531091576, 5.39706959678756601572935967398, 6.23611808900795718302292538494, 7.37155386237562960494025484193, 7.78327708317457051889673808428, 8.336590790983827096246798319118

Graph of the $Z$-function along the critical line