Properties

Label 2-5220-1.1-c1-0-9
Degree $2$
Conductor $5220$
Sign $1$
Analytic cond. $41.6819$
Root an. cond. $6.45615$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5-s − 2·7-s + 4·11-s − 6·13-s + 4·17-s + 4·19-s − 6·23-s + 25-s + 29-s + 2·35-s − 8·37-s + 2·41-s + 4·43-s + 4·47-s − 3·49-s + 2·53-s − 4·55-s − 8·59-s + 10·61-s + 6·65-s − 10·67-s + 8·71-s − 8·77-s + 8·79-s + 6·83-s − 4·85-s − 6·89-s + ⋯
L(s)  = 1  − 0.447·5-s − 0.755·7-s + 1.20·11-s − 1.66·13-s + 0.970·17-s + 0.917·19-s − 1.25·23-s + 1/5·25-s + 0.185·29-s + 0.338·35-s − 1.31·37-s + 0.312·41-s + 0.609·43-s + 0.583·47-s − 3/7·49-s + 0.274·53-s − 0.539·55-s − 1.04·59-s + 1.28·61-s + 0.744·65-s − 1.22·67-s + 0.949·71-s − 0.911·77-s + 0.900·79-s + 0.658·83-s − 0.433·85-s − 0.635·89-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 5220 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5220 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(5220\)    =    \(2^{2} \cdot 3^{2} \cdot 5 \cdot 29\)
Sign: $1$
Analytic conductor: \(41.6819\)
Root analytic conductor: \(6.45615\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 5220,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.373260807\)
\(L(\frac12)\) \(\approx\) \(1.373260807\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 + T \)
29 \( 1 - T \)
good7 \( 1 + 2 T + p T^{2} \)
11 \( 1 - 4 T + p T^{2} \)
13 \( 1 + 6 T + p T^{2} \)
17 \( 1 - 4 T + p T^{2} \)
19 \( 1 - 4 T + p T^{2} \)
23 \( 1 + 6 T + p T^{2} \)
31 \( 1 + p T^{2} \)
37 \( 1 + 8 T + p T^{2} \)
41 \( 1 - 2 T + p T^{2} \)
43 \( 1 - 4 T + p T^{2} \)
47 \( 1 - 4 T + p T^{2} \)
53 \( 1 - 2 T + p T^{2} \)
59 \( 1 + 8 T + p T^{2} \)
61 \( 1 - 10 T + p T^{2} \)
67 \( 1 + 10 T + p T^{2} \)
71 \( 1 - 8 T + p T^{2} \)
73 \( 1 + p T^{2} \)
79 \( 1 - 8 T + p T^{2} \)
83 \( 1 - 6 T + p T^{2} \)
89 \( 1 + 6 T + p T^{2} \)
97 \( 1 + 12 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.088083699710393620705951236530, −7.40376064054788239128125112465, −6.91608044558078071309301932539, −6.07032600658004455460921957090, −5.32258447566160792398213499452, −4.44719121575233074558454918551, −3.65226700481618669934198159132, −3.00045546092868765699835197250, −1.89856523418779091680005516342, −0.62579465272769471064720293739, 0.62579465272769471064720293739, 1.89856523418779091680005516342, 3.00045546092868765699835197250, 3.65226700481618669934198159132, 4.44719121575233074558454918551, 5.32258447566160792398213499452, 6.07032600658004455460921957090, 6.91608044558078071309301932539, 7.40376064054788239128125112465, 8.088083699710393620705951236530

Graph of the $Z$-function along the critical line