Properties

Label 2-5200-1.1-c1-0-39
Degree $2$
Conductor $5200$
Sign $1$
Analytic cond. $41.5222$
Root an. cond. $6.44377$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.56·3-s − 3.20·7-s + 3.56·9-s − 1.46·11-s − 13-s − 5.10·17-s + 1.74·19-s − 8.21·21-s + 9.22·23-s + 1.43·27-s + 9.86·29-s + 7.00·31-s − 3.74·33-s + 3.12·37-s − 2.56·39-s + 4.46·41-s + 1.01·43-s − 4.12·47-s + 3.27·49-s − 13.0·51-s − 2.54·53-s + 4.46·57-s − 5.40·59-s + 0.543·61-s − 11.4·63-s + 12.7·67-s + 23.6·69-s + ⋯
L(s)  = 1  + 1.47·3-s − 1.21·7-s + 1.18·9-s − 0.440·11-s − 0.277·13-s − 1.23·17-s + 0.400·19-s − 1.79·21-s + 1.92·23-s + 0.276·27-s + 1.83·29-s + 1.25·31-s − 0.651·33-s + 0.513·37-s − 0.410·39-s + 0.697·41-s + 0.155·43-s − 0.602·47-s + 0.467·49-s − 1.83·51-s − 0.349·53-s + 0.591·57-s − 0.703·59-s + 0.0696·61-s − 1.43·63-s + 1.55·67-s + 2.84·69-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 5200 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5200 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(5200\)    =    \(2^{4} \cdot 5^{2} \cdot 13\)
Sign: $1$
Analytic conductor: \(41.5222\)
Root analytic conductor: \(6.44377\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 5200,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.827739436\)
\(L(\frac12)\) \(\approx\) \(2.827739436\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
13 \( 1 + T \)
good3 \( 1 - 2.56T + 3T^{2} \)
7 \( 1 + 3.20T + 7T^{2} \)
11 \( 1 + 1.46T + 11T^{2} \)
17 \( 1 + 5.10T + 17T^{2} \)
19 \( 1 - 1.74T + 19T^{2} \)
23 \( 1 - 9.22T + 23T^{2} \)
29 \( 1 - 9.86T + 29T^{2} \)
31 \( 1 - 7.00T + 31T^{2} \)
37 \( 1 - 3.12T + 37T^{2} \)
41 \( 1 - 4.46T + 41T^{2} \)
43 \( 1 - 1.01T + 43T^{2} \)
47 \( 1 + 4.12T + 47T^{2} \)
53 \( 1 + 2.54T + 53T^{2} \)
59 \( 1 + 5.40T + 59T^{2} \)
61 \( 1 - 0.543T + 61T^{2} \)
67 \( 1 - 12.7T + 67T^{2} \)
71 \( 1 - 4.87T + 71T^{2} \)
73 \( 1 - 2.86T + 73T^{2} \)
79 \( 1 - 9.22T + 79T^{2} \)
83 \( 1 - 6.38T + 83T^{2} \)
89 \( 1 - 17.5T + 89T^{2} \)
97 \( 1 + 6.21T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.241287321630191116413100190787, −7.66121599148857462903942341930, −6.69294178615063481049290246439, −6.46559828677760409268761082989, −5.09316780651186380520527953967, −4.41530233983438993932617531913, −3.38738896617077713209228939910, −2.85191634883019743425068841195, −2.33180929550583545476913987344, −0.833042953231188714321806020150, 0.833042953231188714321806020150, 2.33180929550583545476913987344, 2.85191634883019743425068841195, 3.38738896617077713209228939910, 4.41530233983438993932617531913, 5.09316780651186380520527953967, 6.46559828677760409268761082989, 6.69294178615063481049290246439, 7.66121599148857462903942341930, 8.241287321630191116413100190787

Graph of the $Z$-function along the critical line