Properties

Label 2-5200-1.1-c1-0-104
Degree $2$
Conductor $5200$
Sign $-1$
Analytic cond. $41.5222$
Root an. cond. $6.44377$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.29·3-s − 1.25·7-s + 2.25·9-s − 2·11-s − 13-s − 4.80·17-s + 5.09·19-s − 2.87·21-s − 2.58·23-s − 1.70·27-s + 5.09·29-s − 8.58·31-s − 4.58·33-s + 7.83·37-s − 2.29·39-s − 9.67·41-s − 10.8·43-s − 2.74·47-s − 5.42·49-s − 11.0·51-s + 2.58·53-s + 11.6·57-s + 5.09·59-s + 13.6·61-s − 2.83·63-s − 8.58·67-s − 5.92·69-s + ⋯
L(s)  = 1  + 1.32·3-s − 0.474·7-s + 0.751·9-s − 0.603·11-s − 0.277·13-s − 1.16·17-s + 1.16·19-s − 0.627·21-s − 0.538·23-s − 0.328·27-s + 0.946·29-s − 1.54·31-s − 0.798·33-s + 1.28·37-s − 0.367·39-s − 1.51·41-s − 1.65·43-s − 0.400·47-s − 0.774·49-s − 1.54·51-s + 0.355·53-s + 1.54·57-s + 0.663·59-s + 1.75·61-s − 0.356·63-s − 1.04·67-s − 0.713·69-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 5200 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5200 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(5200\)    =    \(2^{4} \cdot 5^{2} \cdot 13\)
Sign: $-1$
Analytic conductor: \(41.5222\)
Root analytic conductor: \(6.44377\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 5200,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
13 \( 1 + T \)
good3 \( 1 - 2.29T + 3T^{2} \)
7 \( 1 + 1.25T + 7T^{2} \)
11 \( 1 + 2T + 11T^{2} \)
17 \( 1 + 4.80T + 17T^{2} \)
19 \( 1 - 5.09T + 19T^{2} \)
23 \( 1 + 2.58T + 23T^{2} \)
29 \( 1 - 5.09T + 29T^{2} \)
31 \( 1 + 8.58T + 31T^{2} \)
37 \( 1 - 7.83T + 37T^{2} \)
41 \( 1 + 9.67T + 41T^{2} \)
43 \( 1 + 10.8T + 43T^{2} \)
47 \( 1 + 2.74T + 47T^{2} \)
53 \( 1 - 2.58T + 53T^{2} \)
59 \( 1 - 5.09T + 59T^{2} \)
61 \( 1 - 13.6T + 61T^{2} \)
67 \( 1 + 8.58T + 67T^{2} \)
71 \( 1 + 5.38T + 71T^{2} \)
73 \( 1 - 6T + 73T^{2} \)
79 \( 1 + 15.0T + 79T^{2} \)
83 \( 1 + 11.0T + 83T^{2} \)
89 \( 1 - 5.09T + 89T^{2} \)
97 \( 1 + 6.26T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.996555427336631054946376539916, −7.23154556242278729986154771903, −6.64650799159870964544430085993, −5.62254382876655270606153151594, −4.83930329464010162110887780495, −3.88980056014297353346507698724, −3.16681091049106299102329269343, −2.54255453398850680524314247071, −1.66775719015641023432530164089, 0, 1.66775719015641023432530164089, 2.54255453398850680524314247071, 3.16681091049106299102329269343, 3.88980056014297353346507698724, 4.83930329464010162110887780495, 5.62254382876655270606153151594, 6.64650799159870964544430085993, 7.23154556242278729986154771903, 7.996555427336631054946376539916

Graph of the $Z$-function along the critical line