Properties

Label 5200.2.a.ce.1.3
Level $5200$
Weight $2$
Character 5200.1
Self dual yes
Analytic conductor $41.522$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [5200,2,Mod(1,5200)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(5200, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("5200.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 5200 = 2^{4} \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5200.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,0,0,0,0,0,-2,0,5,0,-6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(41.5222090511\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: 3.3.940.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - 7x - 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 130)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-2.29240\) of defining polynomial
Character \(\chi\) \(=\) 5200.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.29240 q^{3} -1.25511 q^{7} +2.25511 q^{9} -2.00000 q^{11} -1.00000 q^{13} -4.80261 q^{17} +5.09501 q^{19} -2.87720 q^{21} -2.58480 q^{23} -1.70760 q^{27} +5.09501 q^{29} -8.58480 q^{31} -4.58480 q^{33} +7.83991 q^{37} -2.29240 q^{39} -9.67982 q^{41} -10.8772 q^{43} -2.74489 q^{47} -5.42471 q^{49} -11.0095 q^{51} +2.58480 q^{53} +11.6798 q^{57} +5.09501 q^{59} +13.6798 q^{61} -2.83039 q^{63} -8.58480 q^{67} -5.92541 q^{69} -5.38741 q^{71} +6.00000 q^{73} +2.51021 q^{77} -15.0950 q^{79} -10.6798 q^{81} -11.0950 q^{83} +11.6798 q^{87} +5.09501 q^{89} +1.25511 q^{91} -19.6798 q^{93} -6.26462 q^{97} -4.51021 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 2 q^{7} + 5 q^{9} - 6 q^{11} - 3 q^{13} - 4 q^{17} - 2 q^{19} + 12 q^{21} + 6 q^{23} - 12 q^{27} - 2 q^{29} - 12 q^{31} + 8 q^{37} + 2 q^{41} - 12 q^{43} - 10 q^{47} + 13 q^{49} + 10 q^{51} - 6 q^{53}+ \cdots - 10 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 2.29240 1.32352 0.661759 0.749716i \(-0.269810\pi\)
0.661759 + 0.749716i \(0.269810\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) −1.25511 −0.474385 −0.237193 0.971463i \(-0.576227\pi\)
−0.237193 + 0.971463i \(0.576227\pi\)
\(8\) 0 0
\(9\) 2.25511 0.751702
\(10\) 0 0
\(11\) −2.00000 −0.603023 −0.301511 0.953463i \(-0.597491\pi\)
−0.301511 + 0.953463i \(0.597491\pi\)
\(12\) 0 0
\(13\) −1.00000 −0.277350
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −4.80261 −1.16480 −0.582402 0.812901i \(-0.697887\pi\)
−0.582402 + 0.812901i \(0.697887\pi\)
\(18\) 0 0
\(19\) 5.09501 1.16888 0.584438 0.811438i \(-0.301315\pi\)
0.584438 + 0.811438i \(0.301315\pi\)
\(20\) 0 0
\(21\) −2.87720 −0.627858
\(22\) 0 0
\(23\) −2.58480 −0.538969 −0.269484 0.963005i \(-0.586853\pi\)
−0.269484 + 0.963005i \(0.586853\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) −1.70760 −0.328627
\(28\) 0 0
\(29\) 5.09501 0.946120 0.473060 0.881030i \(-0.343149\pi\)
0.473060 + 0.881030i \(0.343149\pi\)
\(30\) 0 0
\(31\) −8.58480 −1.54188 −0.770938 0.636910i \(-0.780212\pi\)
−0.770938 + 0.636910i \(0.780212\pi\)
\(32\) 0 0
\(33\) −4.58480 −0.798112
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 7.83991 1.28887 0.644436 0.764658i \(-0.277092\pi\)
0.644436 + 0.764658i \(0.277092\pi\)
\(38\) 0 0
\(39\) −2.29240 −0.367078
\(40\) 0 0
\(41\) −9.67982 −1.51173 −0.755867 0.654726i \(-0.772784\pi\)
−0.755867 + 0.654726i \(0.772784\pi\)
\(42\) 0 0
\(43\) −10.8772 −1.65876 −0.829379 0.558686i \(-0.811306\pi\)
−0.829379 + 0.558686i \(0.811306\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −2.74489 −0.400384 −0.200192 0.979757i \(-0.564157\pi\)
−0.200192 + 0.979757i \(0.564157\pi\)
\(48\) 0 0
\(49\) −5.42471 −0.774959
\(50\) 0 0
\(51\) −11.0095 −1.54164
\(52\) 0 0
\(53\) 2.58480 0.355050 0.177525 0.984116i \(-0.443191\pi\)
0.177525 + 0.984116i \(0.443191\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 11.6798 1.54703
\(58\) 0 0
\(59\) 5.09501 0.663314 0.331657 0.943400i \(-0.392392\pi\)
0.331657 + 0.943400i \(0.392392\pi\)
\(60\) 0 0
\(61\) 13.6798 1.75152 0.875761 0.482746i \(-0.160361\pi\)
0.875761 + 0.482746i \(0.160361\pi\)
\(62\) 0 0
\(63\) −2.83039 −0.356596
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) −8.58480 −1.04880 −0.524400 0.851472i \(-0.675710\pi\)
−0.524400 + 0.851472i \(0.675710\pi\)
\(68\) 0 0
\(69\) −5.92541 −0.713335
\(70\) 0 0
\(71\) −5.38741 −0.639369 −0.319684 0.947524i \(-0.603577\pi\)
−0.319684 + 0.947524i \(0.603577\pi\)
\(72\) 0 0
\(73\) 6.00000 0.702247 0.351123 0.936329i \(-0.385800\pi\)
0.351123 + 0.936329i \(0.385800\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 2.51021 0.286065
\(78\) 0 0
\(79\) −15.0950 −1.69832 −0.849161 0.528134i \(-0.822892\pi\)
−0.849161 + 0.528134i \(0.822892\pi\)
\(80\) 0 0
\(81\) −10.6798 −1.18665
\(82\) 0 0
\(83\) −11.0950 −1.21784 −0.608918 0.793233i \(-0.708396\pi\)
−0.608918 + 0.793233i \(0.708396\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 11.6798 1.25221
\(88\) 0 0
\(89\) 5.09501 0.540070 0.270035 0.962850i \(-0.412965\pi\)
0.270035 + 0.962850i \(0.412965\pi\)
\(90\) 0 0
\(91\) 1.25511 0.131571
\(92\) 0 0
\(93\) −19.6798 −2.04070
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −6.26462 −0.636076 −0.318038 0.948078i \(-0.603024\pi\)
−0.318038 + 0.948078i \(0.603024\pi\)
\(98\) 0 0
\(99\) −4.51021 −0.453293
\(100\) 0 0
\(101\) −12.6594 −1.25966 −0.629829 0.776734i \(-0.716875\pi\)
−0.629829 + 0.776734i \(0.716875\pi\)
\(102\) 0 0
\(103\) 7.60522 0.749365 0.374682 0.927153i \(-0.377752\pi\)
0.374682 + 0.927153i \(0.377752\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 4.58480 0.443230 0.221615 0.975134i \(-0.428867\pi\)
0.221615 + 0.975134i \(0.428867\pi\)
\(108\) 0 0
\(109\) 14.8772 1.42498 0.712489 0.701683i \(-0.247568\pi\)
0.712489 + 0.701683i \(0.247568\pi\)
\(110\) 0 0
\(111\) 17.9722 1.70585
\(112\) 0 0
\(113\) −4.00000 −0.376288 −0.188144 0.982141i \(-0.560247\pi\)
−0.188144 + 0.982141i \(0.560247\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) −2.25511 −0.208485
\(118\) 0 0
\(119\) 6.02778 0.552566
\(120\) 0 0
\(121\) −7.00000 −0.636364
\(122\) 0 0
\(123\) −22.1900 −2.00081
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 1.41520 0.125578 0.0627892 0.998027i \(-0.480000\pi\)
0.0627892 + 0.998027i \(0.480000\pi\)
\(128\) 0 0
\(129\) −24.9349 −2.19540
\(130\) 0 0
\(131\) −11.0095 −0.961906 −0.480953 0.876746i \(-0.659709\pi\)
−0.480953 + 0.876746i \(0.659709\pi\)
\(132\) 0 0
\(133\) −6.39478 −0.554497
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −14.5848 −1.24606 −0.623032 0.782196i \(-0.714099\pi\)
−0.623032 + 0.782196i \(0.714099\pi\)
\(138\) 0 0
\(139\) −7.32970 −0.621697 −0.310848 0.950459i \(-0.600613\pi\)
−0.310848 + 0.950459i \(0.600613\pi\)
\(140\) 0 0
\(141\) −6.29240 −0.529916
\(142\) 0 0
\(143\) 2.00000 0.167248
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) −12.4356 −1.02567
\(148\) 0 0
\(149\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(150\) 0 0
\(151\) 14.5570 1.18463 0.592317 0.805705i \(-0.298213\pi\)
0.592317 + 0.805705i \(0.298213\pi\)
\(152\) 0 0
\(153\) −10.8304 −0.875585
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) −13.0950 −1.04510 −0.522548 0.852610i \(-0.675018\pi\)
−0.522548 + 0.852610i \(0.675018\pi\)
\(158\) 0 0
\(159\) 5.92541 0.469915
\(160\) 0 0
\(161\) 3.24420 0.255679
\(162\) 0 0
\(163\) 12.2646 0.960639 0.480320 0.877094i \(-0.340521\pi\)
0.480320 + 0.877094i \(0.340521\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −18.3392 −1.41913 −0.709565 0.704640i \(-0.751109\pi\)
−0.709565 + 0.704640i \(0.751109\pi\)
\(168\) 0 0
\(169\) 1.00000 0.0769231
\(170\) 0 0
\(171\) 11.4898 0.878646
\(172\) 0 0
\(173\) 9.41520 0.715824 0.357912 0.933755i \(-0.383489\pi\)
0.357912 + 0.933755i \(0.383489\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 11.6798 0.877909
\(178\) 0 0
\(179\) 7.32970 0.547847 0.273924 0.961751i \(-0.411678\pi\)
0.273924 + 0.961751i \(0.411678\pi\)
\(180\) 0 0
\(181\) 11.7544 0.873698 0.436849 0.899535i \(-0.356094\pi\)
0.436849 + 0.899535i \(0.356094\pi\)
\(182\) 0 0
\(183\) 31.3596 2.31817
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 9.60522 0.702403
\(188\) 0 0
\(189\) 2.14322 0.155896
\(190\) 0 0
\(191\) 1.60522 0.116150 0.0580749 0.998312i \(-0.481504\pi\)
0.0580749 + 0.998312i \(0.481504\pi\)
\(192\) 0 0
\(193\) 15.7544 1.13403 0.567014 0.823708i \(-0.308099\pi\)
0.567014 + 0.823708i \(0.308099\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 1.00951 0.0719249 0.0359625 0.999353i \(-0.488550\pi\)
0.0359625 + 0.999353i \(0.488550\pi\)
\(198\) 0 0
\(199\) −0.435617 −0.0308801 −0.0154400 0.999881i \(-0.504915\pi\)
−0.0154400 + 0.999881i \(0.504915\pi\)
\(200\) 0 0
\(201\) −19.6798 −1.38811
\(202\) 0 0
\(203\) −6.39478 −0.448825
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) −5.82900 −0.405144
\(208\) 0 0
\(209\) −10.1900 −0.704859
\(210\) 0 0
\(211\) −16.3501 −1.12559 −0.562794 0.826597i \(-0.690274\pi\)
−0.562794 + 0.826597i \(0.690274\pi\)
\(212\) 0 0
\(213\) −12.3501 −0.846216
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 10.7748 0.731443
\(218\) 0 0
\(219\) 13.7544 0.929437
\(220\) 0 0
\(221\) 4.80261 0.323059
\(222\) 0 0
\(223\) −21.7843 −1.45879 −0.729394 0.684094i \(-0.760198\pi\)
−0.729394 + 0.684094i \(0.760198\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −9.02042 −0.598706 −0.299353 0.954142i \(-0.596771\pi\)
−0.299353 + 0.954142i \(0.596771\pi\)
\(228\) 0 0
\(229\) 4.68718 0.309737 0.154869 0.987935i \(-0.450505\pi\)
0.154869 + 0.987935i \(0.450505\pi\)
\(230\) 0 0
\(231\) 5.75441 0.378612
\(232\) 0 0
\(233\) −13.5366 −0.886812 −0.443406 0.896321i \(-0.646230\pi\)
−0.443406 + 0.896321i \(0.646230\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) −34.6038 −2.24776
\(238\) 0 0
\(239\) −3.19739 −0.206822 −0.103411 0.994639i \(-0.532976\pi\)
−0.103411 + 0.994639i \(0.532976\pi\)
\(240\) 0 0
\(241\) 14.1154 0.909255 0.454627 0.890682i \(-0.349772\pi\)
0.454627 + 0.890682i \(0.349772\pi\)
\(242\) 0 0
\(243\) −19.3596 −1.24192
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −5.09501 −0.324188
\(248\) 0 0
\(249\) −25.4342 −1.61183
\(250\) 0 0
\(251\) 21.1696 1.33621 0.668107 0.744065i \(-0.267105\pi\)
0.668107 + 0.744065i \(0.267105\pi\)
\(252\) 0 0
\(253\) 5.16961 0.325010
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −8.21781 −0.512613 −0.256306 0.966596i \(-0.582506\pi\)
−0.256306 + 0.966596i \(0.582506\pi\)
\(258\) 0 0
\(259\) −9.83991 −0.611422
\(260\) 0 0
\(261\) 11.4898 0.711200
\(262\) 0 0
\(263\) −4.51021 −0.278111 −0.139056 0.990285i \(-0.544407\pi\)
−0.139056 + 0.990285i \(0.544407\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 11.6798 0.714793
\(268\) 0 0
\(269\) −8.51021 −0.518877 −0.259438 0.965760i \(-0.583537\pi\)
−0.259438 + 0.965760i \(0.583537\pi\)
\(270\) 0 0
\(271\) −4.95180 −0.300800 −0.150400 0.988625i \(-0.548056\pi\)
−0.150400 + 0.988625i \(0.548056\pi\)
\(272\) 0 0
\(273\) 2.87720 0.174136
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) −19.8698 −1.19386 −0.596932 0.802292i \(-0.703614\pi\)
−0.596932 + 0.802292i \(0.703614\pi\)
\(278\) 0 0
\(279\) −19.3596 −1.15903
\(280\) 0 0
\(281\) 30.2646 1.80544 0.902718 0.430233i \(-0.141569\pi\)
0.902718 + 0.430233i \(0.141569\pi\)
\(282\) 0 0
\(283\) 26.9240 1.60047 0.800233 0.599689i \(-0.204709\pi\)
0.800233 + 0.599689i \(0.204709\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 12.1492 0.717144
\(288\) 0 0
\(289\) 6.06508 0.356769
\(290\) 0 0
\(291\) −14.3610 −0.841858
\(292\) 0 0
\(293\) −5.18051 −0.302649 −0.151324 0.988484i \(-0.548354\pi\)
−0.151324 + 0.988484i \(0.548354\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 3.41520 0.198170
\(298\) 0 0
\(299\) 2.58480 0.149483
\(300\) 0 0
\(301\) 13.6520 0.786890
\(302\) 0 0
\(303\) −29.0204 −1.66718
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) −0.320184 −0.0182738 −0.00913692 0.999958i \(-0.502908\pi\)
−0.00913692 + 0.999958i \(0.502908\pi\)
\(308\) 0 0
\(309\) 17.4342 0.991798
\(310\) 0 0
\(311\) 9.86984 0.559667 0.279834 0.960048i \(-0.409721\pi\)
0.279834 + 0.960048i \(0.409721\pi\)
\(312\) 0 0
\(313\) −10.6126 −0.599859 −0.299929 0.953961i \(-0.596963\pi\)
−0.299929 + 0.953961i \(0.596963\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 12.1900 0.684660 0.342330 0.939580i \(-0.388784\pi\)
0.342330 + 0.939580i \(0.388784\pi\)
\(318\) 0 0
\(319\) −10.1900 −0.570532
\(320\) 0 0
\(321\) 10.5102 0.586623
\(322\) 0 0
\(323\) −24.4694 −1.36151
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 34.1045 1.88598
\(328\) 0 0
\(329\) 3.44513 0.189936
\(330\) 0 0
\(331\) 17.9444 0.986315 0.493158 0.869940i \(-0.335843\pi\)
0.493158 + 0.869940i \(0.335843\pi\)
\(332\) 0 0
\(333\) 17.6798 0.968848
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −20.9518 −1.14132 −0.570659 0.821187i \(-0.693312\pi\)
−0.570659 + 0.821187i \(0.693312\pi\)
\(338\) 0 0
\(339\) −9.16961 −0.498025
\(340\) 0 0
\(341\) 17.1696 0.929786
\(342\) 0 0
\(343\) 15.5943 0.842014
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −3.51757 −0.188833 −0.0944166 0.995533i \(-0.530099\pi\)
−0.0944166 + 0.995533i \(0.530099\pi\)
\(348\) 0 0
\(349\) 17.8568 0.955852 0.477926 0.878400i \(-0.341389\pi\)
0.477926 + 0.878400i \(0.341389\pi\)
\(350\) 0 0
\(351\) 1.70760 0.0911449
\(352\) 0 0
\(353\) −36.9240 −1.96527 −0.982634 0.185557i \(-0.940591\pi\)
−0.982634 + 0.185557i \(0.940591\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 13.8181 0.731331
\(358\) 0 0
\(359\) 6.77483 0.357562 0.178781 0.983889i \(-0.442785\pi\)
0.178781 + 0.983889i \(0.442785\pi\)
\(360\) 0 0
\(361\) 6.95916 0.366272
\(362\) 0 0
\(363\) −16.0468 −0.842239
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 7.80997 0.407677 0.203839 0.979004i \(-0.434658\pi\)
0.203839 + 0.979004i \(0.434658\pi\)
\(368\) 0 0
\(369\) −21.8290 −1.13637
\(370\) 0 0
\(371\) −3.24420 −0.168430
\(372\) 0 0
\(373\) −15.8698 −0.821709 −0.410855 0.911701i \(-0.634770\pi\)
−0.410855 + 0.911701i \(0.634770\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −5.09501 −0.262407
\(378\) 0 0
\(379\) 16.7748 0.861665 0.430833 0.902432i \(-0.358220\pi\)
0.430833 + 0.902432i \(0.358220\pi\)
\(380\) 0 0
\(381\) 3.24420 0.166205
\(382\) 0 0
\(383\) 16.6147 0.848973 0.424487 0.905434i \(-0.360455\pi\)
0.424487 + 0.905434i \(0.360455\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −24.5292 −1.24689
\(388\) 0 0
\(389\) 36.7193 1.86174 0.930870 0.365350i \(-0.119051\pi\)
0.930870 + 0.365350i \(0.119051\pi\)
\(390\) 0 0
\(391\) 12.4138 0.627793
\(392\) 0 0
\(393\) −25.2382 −1.27310
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 29.2104 1.46603 0.733015 0.680212i \(-0.238112\pi\)
0.733015 + 0.680212i \(0.238112\pi\)
\(398\) 0 0
\(399\) −14.6594 −0.733888
\(400\) 0 0
\(401\) 15.6052 0.779288 0.389644 0.920966i \(-0.372598\pi\)
0.389644 + 0.920966i \(0.372598\pi\)
\(402\) 0 0
\(403\) 8.58480 0.427640
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −15.6798 −0.777220
\(408\) 0 0
\(409\) 13.7952 0.682131 0.341066 0.940039i \(-0.389212\pi\)
0.341066 + 0.940039i \(0.389212\pi\)
\(410\) 0 0
\(411\) −33.4342 −1.64919
\(412\) 0 0
\(413\) −6.39478 −0.314666
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) −16.8026 −0.822827
\(418\) 0 0
\(419\) 30.6893 1.49927 0.749636 0.661850i \(-0.230229\pi\)
0.749636 + 0.661850i \(0.230229\pi\)
\(420\) 0 0
\(421\) −16.9180 −0.824535 −0.412268 0.911063i \(-0.635263\pi\)
−0.412268 + 0.911063i \(0.635263\pi\)
\(422\) 0 0
\(423\) −6.19003 −0.300969
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) −17.1696 −0.830895
\(428\) 0 0
\(429\) 4.58480 0.221356
\(430\) 0 0
\(431\) 17.9722 0.865691 0.432846 0.901468i \(-0.357510\pi\)
0.432846 + 0.901468i \(0.357510\pi\)
\(432\) 0 0
\(433\) 2.61259 0.125553 0.0627764 0.998028i \(-0.480004\pi\)
0.0627764 + 0.998028i \(0.480004\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −13.1696 −0.629988
\(438\) 0 0
\(439\) −14.6594 −0.699655 −0.349827 0.936814i \(-0.613760\pi\)
−0.349827 + 0.936814i \(0.613760\pi\)
\(440\) 0 0
\(441\) −12.2333 −0.582538
\(442\) 0 0
\(443\) −8.33324 −0.395924 −0.197962 0.980210i \(-0.563432\pi\)
−0.197962 + 0.980210i \(0.563432\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −4.04084 −0.190699 −0.0953495 0.995444i \(-0.530397\pi\)
−0.0953495 + 0.995444i \(0.530397\pi\)
\(450\) 0 0
\(451\) 19.3596 0.911610
\(452\) 0 0
\(453\) 33.3705 1.56788
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −0.979580 −0.0458228 −0.0229114 0.999737i \(-0.507294\pi\)
−0.0229114 + 0.999737i \(0.507294\pi\)
\(458\) 0 0
\(459\) 8.20093 0.382787
\(460\) 0 0
\(461\) 10.7280 0.499654 0.249827 0.968291i \(-0.419626\pi\)
0.249827 + 0.968291i \(0.419626\pi\)
\(462\) 0 0
\(463\) −23.2104 −1.07868 −0.539340 0.842088i \(-0.681326\pi\)
−0.539340 + 0.842088i \(0.681326\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −28.5848 −1.32275 −0.661373 0.750057i \(-0.730026\pi\)
−0.661373 + 0.750057i \(0.730026\pi\)
\(468\) 0 0
\(469\) 10.7748 0.497535
\(470\) 0 0
\(471\) −30.0190 −1.38320
\(472\) 0 0
\(473\) 21.7544 1.00027
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 5.82900 0.266892
\(478\) 0 0
\(479\) 30.4078 1.38937 0.694685 0.719314i \(-0.255544\pi\)
0.694685 + 0.719314i \(0.255544\pi\)
\(480\) 0 0
\(481\) −7.83991 −0.357469
\(482\) 0 0
\(483\) 7.43701 0.338396
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 8.00000 0.362515 0.181257 0.983436i \(-0.441983\pi\)
0.181257 + 0.983436i \(0.441983\pi\)
\(488\) 0 0
\(489\) 28.1154 1.27142
\(490\) 0 0
\(491\) −22.6893 −1.02396 −0.511978 0.858999i \(-0.671087\pi\)
−0.511978 + 0.858999i \(0.671087\pi\)
\(492\) 0 0
\(493\) −24.4694 −1.10204
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 6.76177 0.303307
\(498\) 0 0
\(499\) −31.8698 −1.42669 −0.713345 0.700813i \(-0.752821\pi\)
−0.713345 + 0.700813i \(0.752821\pi\)
\(500\) 0 0
\(501\) −42.0408 −1.87825
\(502\) 0 0
\(503\) −14.2646 −0.636028 −0.318014 0.948086i \(-0.603016\pi\)
−0.318014 + 0.948086i \(0.603016\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 2.29240 0.101809
\(508\) 0 0
\(509\) 23.3596 1.03540 0.517699 0.855563i \(-0.326789\pi\)
0.517699 + 0.855563i \(0.326789\pi\)
\(510\) 0 0
\(511\) −7.53063 −0.333135
\(512\) 0 0
\(513\) −8.70024 −0.384125
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 5.48979 0.241441
\(518\) 0 0
\(519\) 21.5834 0.947407
\(520\) 0 0
\(521\) −40.4247 −1.77104 −0.885519 0.464602i \(-0.846197\pi\)
−0.885519 + 0.464602i \(0.846197\pi\)
\(522\) 0 0
\(523\) 37.9853 1.66098 0.830490 0.557033i \(-0.188060\pi\)
0.830490 + 0.557033i \(0.188060\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 41.2295 1.79598
\(528\) 0 0
\(529\) −16.3188 −0.709513
\(530\) 0 0
\(531\) 11.4898 0.498614
\(532\) 0 0
\(533\) 9.67982 0.419279
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 16.8026 0.725086
\(538\) 0 0
\(539\) 10.8494 0.467318
\(540\) 0 0
\(541\) 26.8772 1.15554 0.577771 0.816199i \(-0.303923\pi\)
0.577771 + 0.816199i \(0.303923\pi\)
\(542\) 0 0
\(543\) 26.9458 1.15636
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 19.8976 0.850761 0.425381 0.905015i \(-0.360140\pi\)
0.425381 + 0.905015i \(0.360140\pi\)
\(548\) 0 0
\(549\) 30.8494 1.31662
\(550\) 0 0
\(551\) 25.9592 1.10590
\(552\) 0 0
\(553\) 18.9458 0.805659
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 1.50070 0.0635865 0.0317933 0.999494i \(-0.489878\pi\)
0.0317933 + 0.999494i \(0.489878\pi\)
\(558\) 0 0
\(559\) 10.8772 0.460057
\(560\) 0 0
\(561\) 22.0190 0.929644
\(562\) 0 0
\(563\) −20.6872 −0.871861 −0.435930 0.899980i \(-0.643581\pi\)
−0.435930 + 0.899980i \(0.643581\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 13.4043 0.562927
\(568\) 0 0
\(569\) −6.08550 −0.255117 −0.127559 0.991831i \(-0.540714\pi\)
−0.127559 + 0.991831i \(0.540714\pi\)
\(570\) 0 0
\(571\) 9.98909 0.418031 0.209015 0.977912i \(-0.432974\pi\)
0.209015 + 0.977912i \(0.432974\pi\)
\(572\) 0 0
\(573\) 3.67982 0.153727
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 8.33921 0.347166 0.173583 0.984819i \(-0.444466\pi\)
0.173583 + 0.984819i \(0.444466\pi\)
\(578\) 0 0
\(579\) 36.1154 1.50091
\(580\) 0 0
\(581\) 13.9254 0.577723
\(582\) 0 0
\(583\) −5.16961 −0.214103
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −23.2442 −0.959391 −0.479695 0.877435i \(-0.659253\pi\)
−0.479695 + 0.877435i \(0.659253\pi\)
\(588\) 0 0
\(589\) −43.7397 −1.80226
\(590\) 0 0
\(591\) 2.31421 0.0951940
\(592\) 0 0
\(593\) 34.2646 1.40708 0.703540 0.710656i \(-0.251602\pi\)
0.703540 + 0.710656i \(0.251602\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −0.998609 −0.0408703
\(598\) 0 0
\(599\) 31.1886 1.27433 0.637167 0.770726i \(-0.280106\pi\)
0.637167 + 0.770726i \(0.280106\pi\)
\(600\) 0 0
\(601\) −3.40429 −0.138864 −0.0694320 0.997587i \(-0.522119\pi\)
−0.0694320 + 0.997587i \(0.522119\pi\)
\(602\) 0 0
\(603\) −19.3596 −0.788385
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) −0.945827 −0.0383899 −0.0191950 0.999816i \(-0.506110\pi\)
−0.0191950 + 0.999816i \(0.506110\pi\)
\(608\) 0 0
\(609\) −14.6594 −0.594029
\(610\) 0 0
\(611\) 2.74489 0.111047
\(612\) 0 0
\(613\) −40.7193 −1.64464 −0.822318 0.569028i \(-0.807319\pi\)
−0.822318 + 0.569028i \(0.807319\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −12.6594 −0.509648 −0.254824 0.966987i \(-0.582018\pi\)
−0.254824 + 0.966987i \(0.582018\pi\)
\(618\) 0 0
\(619\) −5.03945 −0.202553 −0.101276 0.994858i \(-0.532293\pi\)
−0.101276 + 0.994858i \(0.532293\pi\)
\(620\) 0 0
\(621\) 4.41381 0.177120
\(622\) 0 0
\(623\) −6.39478 −0.256201
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) −23.3596 −0.932894
\(628\) 0 0
\(629\) −37.6520 −1.50128
\(630\) 0 0
\(631\) 1.00736 0.0401024 0.0200512 0.999799i \(-0.493617\pi\)
0.0200512 + 0.999799i \(0.493617\pi\)
\(632\) 0 0
\(633\) −37.4810 −1.48974
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 5.42471 0.214935
\(638\) 0 0
\(639\) −12.1492 −0.480614
\(640\) 0 0
\(641\) −41.3596 −1.63361 −0.816804 0.576916i \(-0.804256\pi\)
−0.816804 + 0.576916i \(0.804256\pi\)
\(642\) 0 0
\(643\) −3.26601 −0.128799 −0.0643994 0.997924i \(-0.520513\pi\)
−0.0643994 + 0.997924i \(0.520513\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 19.4342 0.764038 0.382019 0.924154i \(-0.375229\pi\)
0.382019 + 0.924154i \(0.375229\pi\)
\(648\) 0 0
\(649\) −10.1900 −0.399994
\(650\) 0 0
\(651\) 24.7002 0.968079
\(652\) 0 0
\(653\) 4.51021 0.176498 0.0882491 0.996098i \(-0.471873\pi\)
0.0882491 + 0.996098i \(0.471873\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 13.5306 0.527880
\(658\) 0 0
\(659\) −27.2104 −1.05997 −0.529984 0.848007i \(-0.677802\pi\)
−0.529984 + 0.848007i \(0.677802\pi\)
\(660\) 0 0
\(661\) −24.5292 −0.954077 −0.477038 0.878882i \(-0.658290\pi\)
−0.477038 + 0.878882i \(0.658290\pi\)
\(662\) 0 0
\(663\) 11.0095 0.427574
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −13.1696 −0.509929
\(668\) 0 0
\(669\) −49.9385 −1.93073
\(670\) 0 0
\(671\) −27.3596 −1.05621
\(672\) 0 0
\(673\) 8.95180 0.345066 0.172533 0.985004i \(-0.444805\pi\)
0.172533 + 0.985004i \(0.444805\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 32.6256 1.25391 0.626953 0.779057i \(-0.284302\pi\)
0.626953 + 0.779057i \(0.284302\pi\)
\(678\) 0 0
\(679\) 7.86276 0.301745
\(680\) 0 0
\(681\) −20.6784 −0.792399
\(682\) 0 0
\(683\) −11.0950 −0.424539 −0.212269 0.977211i \(-0.568085\pi\)
−0.212269 + 0.977211i \(0.568085\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 10.7449 0.409943
\(688\) 0 0
\(689\) −2.58480 −0.0984732
\(690\) 0 0
\(691\) 13.5306 0.514729 0.257365 0.966314i \(-0.417146\pi\)
0.257365 + 0.966314i \(0.417146\pi\)
\(692\) 0 0
\(693\) 5.66079 0.215036
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 46.4884 1.76087
\(698\) 0 0
\(699\) −31.0313 −1.17371
\(700\) 0 0
\(701\) −48.1345 −1.81801 −0.909007 0.416781i \(-0.863158\pi\)
−0.909007 + 0.416781i \(0.863158\pi\)
\(702\) 0 0
\(703\) 39.9444 1.50653
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 15.8889 0.597563
\(708\) 0 0
\(709\) 16.5292 0.620769 0.310384 0.950611i \(-0.399542\pi\)
0.310384 + 0.950611i \(0.399542\pi\)
\(710\) 0 0
\(711\) −34.0408 −1.27663
\(712\) 0 0
\(713\) 22.1900 0.831023
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −7.32970 −0.273733
\(718\) 0 0
\(719\) 6.39478 0.238485 0.119242 0.992865i \(-0.461953\pi\)
0.119242 + 0.992865i \(0.461953\pi\)
\(720\) 0 0
\(721\) −9.54535 −0.355488
\(722\) 0 0
\(723\) 32.3582 1.20342
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 35.0204 1.29884 0.649418 0.760432i \(-0.275013\pi\)
0.649418 + 0.760432i \(0.275013\pi\)
\(728\) 0 0
\(729\) −12.3406 −0.457059
\(730\) 0 0
\(731\) 52.2390 1.93213
\(732\) 0 0
\(733\) 22.6485 0.836541 0.418271 0.908322i \(-0.362636\pi\)
0.418271 + 0.908322i \(0.362636\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 17.1696 0.632451
\(738\) 0 0
\(739\) −25.0394 −0.921091 −0.460546 0.887636i \(-0.652346\pi\)
−0.460546 + 0.887636i \(0.652346\pi\)
\(740\) 0 0
\(741\) −11.6798 −0.429069
\(742\) 0 0
\(743\) −35.8252 −1.31430 −0.657149 0.753760i \(-0.728238\pi\)
−0.657149 + 0.753760i \(0.728238\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) −25.0204 −0.915449
\(748\) 0 0
\(749\) −5.75441 −0.210262
\(750\) 0 0
\(751\) −41.6988 −1.52161 −0.760806 0.648979i \(-0.775196\pi\)
−0.760806 + 0.648979i \(0.775196\pi\)
\(752\) 0 0
\(753\) 48.5292 1.76850
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) −11.6052 −0.421799 −0.210900 0.977508i \(-0.567639\pi\)
−0.210900 + 0.977508i \(0.567639\pi\)
\(758\) 0 0
\(759\) 11.8508 0.430157
\(760\) 0 0
\(761\) 30.2646 1.09709 0.548546 0.836121i \(-0.315182\pi\)
0.548546 + 0.836121i \(0.315182\pi\)
\(762\) 0 0
\(763\) −18.6725 −0.675988
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −5.09501 −0.183970
\(768\) 0 0
\(769\) 24.6594 0.889241 0.444620 0.895719i \(-0.353339\pi\)
0.444620 + 0.895719i \(0.353339\pi\)
\(770\) 0 0
\(771\) −18.8385 −0.678453
\(772\) 0 0
\(773\) 30.3501 1.09162 0.545809 0.837910i \(-0.316222\pi\)
0.545809 + 0.837910i \(0.316222\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) −22.5570 −0.809229
\(778\) 0 0
\(779\) −49.3188 −1.76703
\(780\) 0 0
\(781\) 10.7748 0.385554
\(782\) 0 0
\(783\) −8.70024 −0.310921
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) −11.1288 −0.396698 −0.198349 0.980131i \(-0.563558\pi\)
−0.198349 + 0.980131i \(0.563558\pi\)
\(788\) 0 0
\(789\) −10.3392 −0.368086
\(790\) 0 0
\(791\) 5.02042 0.178506
\(792\) 0 0
\(793\) −13.6798 −0.485785
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 46.7939 1.65752 0.828762 0.559602i \(-0.189046\pi\)
0.828762 + 0.559602i \(0.189046\pi\)
\(798\) 0 0
\(799\) 13.1827 0.466369
\(800\) 0 0
\(801\) 11.4898 0.405972
\(802\) 0 0
\(803\) −12.0000 −0.423471
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −19.5088 −0.686743
\(808\) 0 0
\(809\) 50.4437 1.77351 0.886754 0.462242i \(-0.152955\pi\)
0.886754 + 0.462242i \(0.152955\pi\)
\(810\) 0 0
\(811\) 36.3991 1.27814 0.639072 0.769147i \(-0.279318\pi\)
0.639072 + 0.769147i \(0.279318\pi\)
\(812\) 0 0
\(813\) −11.3515 −0.398115
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) −55.4195 −1.93888
\(818\) 0 0
\(819\) 2.83039 0.0989020
\(820\) 0 0
\(821\) −6.23684 −0.217667 −0.108834 0.994060i \(-0.534712\pi\)
−0.108834 + 0.994060i \(0.534712\pi\)
\(822\) 0 0
\(823\) −33.7734 −1.17727 −0.588634 0.808400i \(-0.700334\pi\)
−0.588634 + 0.808400i \(0.700334\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −37.2295 −1.29460 −0.647298 0.762237i \(-0.724101\pi\)
−0.647298 + 0.762237i \(0.724101\pi\)
\(828\) 0 0
\(829\) −38.2646 −1.32899 −0.664493 0.747295i \(-0.731352\pi\)
−0.664493 + 0.747295i \(0.731352\pi\)
\(830\) 0 0
\(831\) −45.5497 −1.58010
\(832\) 0 0
\(833\) 26.0528 0.902675
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 14.6594 0.506703
\(838\) 0 0
\(839\) −50.1345 −1.73083 −0.865417 0.501052i \(-0.832946\pi\)
−0.865417 + 0.501052i \(0.832946\pi\)
\(840\) 0 0
\(841\) −3.04084 −0.104857
\(842\) 0 0
\(843\) 69.3787 2.38953
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 8.78574 0.301881
\(848\) 0 0
\(849\) 61.7207 2.11825
\(850\) 0 0
\(851\) −20.2646 −0.694662
\(852\) 0 0
\(853\) −12.3910 −0.424258 −0.212129 0.977242i \(-0.568040\pi\)
−0.212129 + 0.977242i \(0.568040\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −25.4005 −0.867664 −0.433832 0.900994i \(-0.642839\pi\)
−0.433832 + 0.900994i \(0.642839\pi\)
\(858\) 0 0
\(859\) 50.1900 1.71246 0.856231 0.516593i \(-0.172800\pi\)
0.856231 + 0.516593i \(0.172800\pi\)
\(860\) 0 0
\(861\) 27.8508 0.949153
\(862\) 0 0
\(863\) 43.4451 1.47889 0.739445 0.673217i \(-0.235088\pi\)
0.739445 + 0.673217i \(0.235088\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 13.9036 0.472191
\(868\) 0 0
\(869\) 30.1900 1.02413
\(870\) 0 0
\(871\) 8.58480 0.290885
\(872\) 0 0
\(873\) −14.1274 −0.478139
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −11.6689 −0.394031 −0.197016 0.980400i \(-0.563125\pi\)
−0.197016 + 0.980400i \(0.563125\pi\)
\(878\) 0 0
\(879\) −11.8758 −0.400561
\(880\) 0 0
\(881\) −0.0446585 −0.00150458 −0.000752291 1.00000i \(-0.500239\pi\)
−0.000752291 1.00000i \(0.500239\pi\)
\(882\) 0 0
\(883\) −24.4269 −0.822029 −0.411015 0.911629i \(-0.634826\pi\)
−0.411015 + 0.911629i \(0.634826\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −47.2295 −1.58581 −0.792905 0.609345i \(-0.791433\pi\)
−0.792905 + 0.609345i \(0.791433\pi\)
\(888\) 0 0
\(889\) −1.77622 −0.0595725
\(890\) 0 0
\(891\) 21.3596 0.715575
\(892\) 0 0
\(893\) −13.9853 −0.467999
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 5.92541 0.197844
\(898\) 0 0
\(899\) −43.7397 −1.45880
\(900\) 0 0
\(901\) −12.4138 −0.413564
\(902\) 0 0
\(903\) 31.2959 1.04146
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) −44.7133 −1.48468 −0.742340 0.670023i \(-0.766284\pi\)
−0.742340 + 0.670023i \(0.766284\pi\)
\(908\) 0 0
\(909\) −28.5483 −0.946886
\(910\) 0 0
\(911\) −51.9444 −1.72100 −0.860498 0.509454i \(-0.829847\pi\)
−0.860498 + 0.509454i \(0.829847\pi\)
\(912\) 0 0
\(913\) 22.1900 0.734383
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 13.8181 0.456314
\(918\) 0 0
\(919\) 13.5497 0.446962 0.223481 0.974708i \(-0.428258\pi\)
0.223481 + 0.974708i \(0.428258\pi\)
\(920\) 0 0
\(921\) −0.733989 −0.0241858
\(922\) 0 0
\(923\) 5.38741 0.177329
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 17.1506 0.563299
\(928\) 0 0
\(929\) −44.1682 −1.44911 −0.724556 0.689216i \(-0.757955\pi\)
−0.724556 + 0.689216i \(0.757955\pi\)
\(930\) 0 0
\(931\) −27.6390 −0.905831
\(932\) 0 0
\(933\) 22.6256 0.740730
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 41.6988 1.36224 0.681121 0.732171i \(-0.261493\pi\)
0.681121 + 0.732171i \(0.261493\pi\)
\(938\) 0 0
\(939\) −24.3283 −0.793924
\(940\) 0 0
\(941\) 37.4473 1.22075 0.610373 0.792114i \(-0.291019\pi\)
0.610373 + 0.792114i \(0.291019\pi\)
\(942\) 0 0
\(943\) 25.0204 0.814777
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −11.5644 −0.375792 −0.187896 0.982189i \(-0.560167\pi\)
−0.187896 + 0.982189i \(0.560167\pi\)
\(948\) 0 0
\(949\) −6.00000 −0.194768
\(950\) 0 0
\(951\) 27.9444 0.906160
\(952\) 0 0
\(953\) −53.4810 −1.73242 −0.866210 0.499680i \(-0.833451\pi\)
−0.866210 + 0.499680i \(0.833451\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) −23.3596 −0.755110
\(958\) 0 0
\(959\) 18.3055 0.591114
\(960\) 0 0
\(961\) 42.6988 1.37738
\(962\) 0 0
\(963\) 10.3392 0.333176
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 34.8941 1.12212 0.561059 0.827776i \(-0.310394\pi\)
0.561059 + 0.827776i \(0.310394\pi\)
\(968\) 0 0
\(969\) −56.0936 −1.80199
\(970\) 0 0
\(971\) −31.8807 −1.02310 −0.511551 0.859253i \(-0.670929\pi\)
−0.511551 + 0.859253i \(0.670929\pi\)
\(972\) 0 0
\(973\) 9.19954 0.294924
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −2.03375 −0.0650655 −0.0325328 0.999471i \(-0.510357\pi\)
−0.0325328 + 0.999471i \(0.510357\pi\)
\(978\) 0 0
\(979\) −10.1900 −0.325675
\(980\) 0 0
\(981\) 33.5497 1.07116
\(982\) 0 0
\(983\) 29.4043 0.937851 0.468926 0.883238i \(-0.344641\pi\)
0.468926 + 0.883238i \(0.344641\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 7.89762 0.251384
\(988\) 0 0
\(989\) 28.1154 0.894019
\(990\) 0 0
\(991\) −32.9986 −1.04824 −0.524118 0.851646i \(-0.675605\pi\)
−0.524118 + 0.851646i \(0.675605\pi\)
\(992\) 0 0
\(993\) 41.1359 1.30541
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) −31.1696 −0.987151 −0.493576 0.869703i \(-0.664310\pi\)
−0.493576 + 0.869703i \(0.664310\pi\)
\(998\) 0 0
\(999\) −13.3874 −0.423559
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 5200.2.a.ce.1.3 3
4.3 odd 2 650.2.a.n.1.1 3
5.2 odd 4 1040.2.d.b.209.2 6
5.3 odd 4 1040.2.d.b.209.5 6
5.4 even 2 5200.2.a.cf.1.1 3
12.11 even 2 5850.2.a.cs.1.2 3
20.3 even 4 130.2.b.a.79.4 yes 6
20.7 even 4 130.2.b.a.79.3 6
20.19 odd 2 650.2.a.o.1.3 3
52.51 odd 2 8450.2.a.cc.1.1 3
60.23 odd 4 1170.2.e.f.469.3 6
60.47 odd 4 1170.2.e.f.469.6 6
60.59 even 2 5850.2.a.cp.1.2 3
260.47 odd 4 1690.2.c.d.1689.5 6
260.83 odd 4 1690.2.c.d.1689.2 6
260.103 even 4 1690.2.b.a.339.1 6
260.187 odd 4 1690.2.c.a.1689.5 6
260.203 odd 4 1690.2.c.a.1689.2 6
260.207 even 4 1690.2.b.a.339.6 6
260.259 odd 2 8450.2.a.bs.1.3 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
130.2.b.a.79.3 6 20.7 even 4
130.2.b.a.79.4 yes 6 20.3 even 4
650.2.a.n.1.1 3 4.3 odd 2
650.2.a.o.1.3 3 20.19 odd 2
1040.2.d.b.209.2 6 5.2 odd 4
1040.2.d.b.209.5 6 5.3 odd 4
1170.2.e.f.469.3 6 60.23 odd 4
1170.2.e.f.469.6 6 60.47 odd 4
1690.2.b.a.339.1 6 260.103 even 4
1690.2.b.a.339.6 6 260.207 even 4
1690.2.c.a.1689.2 6 260.203 odd 4
1690.2.c.a.1689.5 6 260.187 odd 4
1690.2.c.d.1689.2 6 260.83 odd 4
1690.2.c.d.1689.5 6 260.47 odd 4
5200.2.a.ce.1.3 3 1.1 even 1 trivial
5200.2.a.cf.1.1 3 5.4 even 2
5850.2.a.cp.1.2 3 60.59 even 2
5850.2.a.cs.1.2 3 12.11 even 2
8450.2.a.bs.1.3 3 260.259 odd 2
8450.2.a.cc.1.1 3 52.51 odd 2