Properties

Label 2-520-104.101-c1-0-19
Degree 22
Conductor 520520
Sign 0.3510.936i0.351 - 0.936i
Analytic cond. 4.152224.15222
Root an. cond. 2.037692.03769
Motivic weight 11
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (1.41 − 0.0204i)2-s + (−1.50 + 0.869i)3-s + (1.99 − 0.0579i)4-s − 5-s + (−2.11 + 1.25i)6-s + (0.987 + 0.570i)7-s + (2.82 − 0.122i)8-s + (0.0109 − 0.0189i)9-s + (−1.41 + 0.0204i)10-s + (1.00 + 1.73i)11-s + (−2.95 + 1.82i)12-s + (0.482 + 3.57i)13-s + (1.40 + 0.785i)14-s + (1.50 − 0.869i)15-s + (3.99 − 0.231i)16-s + (1.50 − 2.59i)17-s + ⋯
L(s)  = 1  + (0.999 − 0.0144i)2-s + (−0.869 + 0.501i)3-s + (0.999 − 0.0289i)4-s − 0.447·5-s + (−0.861 + 0.514i)6-s + (0.373 + 0.215i)7-s + (0.999 − 0.0434i)8-s + (0.00365 − 0.00633i)9-s + (−0.447 + 0.00648i)10-s + (0.301 + 0.522i)11-s + (−0.854 + 0.526i)12-s + (0.133 + 0.990i)13-s + (0.376 + 0.210i)14-s + (0.388 − 0.224i)15-s + (0.998 − 0.0579i)16-s + (0.363 − 0.630i)17-s + ⋯

Functional equation

Λ(s)=(520s/2ΓC(s)L(s)=((0.3510.936i)Λ(2s)\begin{aligned}\Lambda(s)=\mathstrut & 520 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.351 - 0.936i)\, \overline{\Lambda}(2-s) \end{aligned}
Λ(s)=(520s/2ΓC(s+1/2)L(s)=((0.3510.936i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 520 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.351 - 0.936i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 520520    =    235132^{3} \cdot 5 \cdot 13
Sign: 0.3510.936i0.351 - 0.936i
Analytic conductor: 4.152224.15222
Root analytic conductor: 2.037692.03769
Motivic weight: 11
Rational: no
Arithmetic: yes
Character: χ520(101,)\chi_{520} (101, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (2, 520, ( :1/2), 0.3510.936i)(2,\ 520,\ (\ :1/2),\ 0.351 - 0.936i)

Particular Values

L(1)L(1) \approx 1.59259+1.10381i1.59259 + 1.10381i
L(12)L(\frac12) \approx 1.59259+1.10381i1.59259 + 1.10381i
L(32)L(\frac{3}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1+(1.41+0.0204i)T 1 + (-1.41 + 0.0204i)T
5 1+T 1 + T
13 1+(0.4823.57i)T 1 + (-0.482 - 3.57i)T
good3 1+(1.500.869i)T+(1.52.59i)T2 1 + (1.50 - 0.869i)T + (1.5 - 2.59i)T^{2}
7 1+(0.9870.570i)T+(3.5+6.06i)T2 1 + (-0.987 - 0.570i)T + (3.5 + 6.06i)T^{2}
11 1+(1.001.73i)T+(5.5+9.52i)T2 1 + (-1.00 - 1.73i)T + (-5.5 + 9.52i)T^{2}
17 1+(1.50+2.59i)T+(8.514.7i)T2 1 + (-1.50 + 2.59i)T + (-8.5 - 14.7i)T^{2}
19 1+(2.664.62i)T+(9.516.4i)T2 1 + (2.66 - 4.62i)T + (-9.5 - 16.4i)T^{2}
23 1+(1.813.13i)T+(11.5+19.9i)T2 1 + (-1.81 - 3.13i)T + (-11.5 + 19.9i)T^{2}
29 1+(2.44+1.41i)T+(14.525.1i)T2 1 + (-2.44 + 1.41i)T + (14.5 - 25.1i)T^{2}
31 17.94iT31T2 1 - 7.94iT - 31T^{2}
37 1+(4.33+7.51i)T+(18.5+32.0i)T2 1 + (4.33 + 7.51i)T + (-18.5 + 32.0i)T^{2}
41 1+(0.975+0.563i)T+(20.535.5i)T2 1 + (-0.975 + 0.563i)T + (20.5 - 35.5i)T^{2}
43 1+(2.661.53i)T+(21.5+37.2i)T2 1 + (-2.66 - 1.53i)T + (21.5 + 37.2i)T^{2}
47 12.99iT47T2 1 - 2.99iT - 47T^{2}
53 1+6.13iT53T2 1 + 6.13iT - 53T^{2}
59 1+(1.62+2.80i)T+(29.551.0i)T2 1 + (-1.62 + 2.80i)T + (-29.5 - 51.0i)T^{2}
61 1+(1.54+0.892i)T+(30.5+52.8i)T2 1 + (1.54 + 0.892i)T + (30.5 + 52.8i)T^{2}
67 1+(7.15+12.4i)T+(33.5+58.0i)T2 1 + (7.15 + 12.4i)T + (-33.5 + 58.0i)T^{2}
71 1+(4.892.82i)T+(35.5+61.4i)T2 1 + (-4.89 - 2.82i)T + (35.5 + 61.4i)T^{2}
73 1+15.8iT73T2 1 + 15.8iT - 73T^{2}
79 15.25T+79T2 1 - 5.25T + 79T^{2}
83 112.2T+83T2 1 - 12.2T + 83T^{2}
89 1+(1.761.01i)T+(44.577.0i)T2 1 + (1.76 - 1.01i)T + (44.5 - 77.0i)T^{2}
97 1+(0.354+0.204i)T+(48.5+84.0i)T2 1 + (0.354 + 0.204i)T + (48.5 + 84.0i)T^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−11.13806426092183192811025495136, −10.61178295639725319990275438190, −9.501178339743183115536191514299, −8.171387779773613522349872629257, −7.13776284564182424171928469434, −6.22710314253869711528069030697, −5.20547534146198696864356104170, −4.56100399679729024287730065246, −3.55106948883912533457875332637, −1.88850916033401435460695271758, 0.997444900436647094914910921975, 2.85856393840169570163738218745, 4.06170087812801651323987718697, 5.13458256638385869095384000735, 6.03665972830782231904516145036, 6.74732483164879632513670134760, 7.72708446560210740161771342888, 8.667598486195741759984972140689, 10.35146880405272444997197990605, 11.05278801846486837064384362293

Graph of the ZZ-function along the critical line