L(s) = 1 | + (1.41 + 0.0204i)2-s + (−1.50 − 0.869i)3-s + (1.99 + 0.0579i)4-s − 5-s + (−2.11 − 1.25i)6-s + (0.987 − 0.570i)7-s + (2.82 + 0.122i)8-s + (0.0109 + 0.0189i)9-s + (−1.41 − 0.0204i)10-s + (1.00 − 1.73i)11-s + (−2.95 − 1.82i)12-s + (0.482 − 3.57i)13-s + (1.40 − 0.785i)14-s + (1.50 + 0.869i)15-s + (3.99 + 0.231i)16-s + (1.50 + 2.59i)17-s + ⋯ |
L(s) = 1 | + (0.999 + 0.0144i)2-s + (−0.869 − 0.501i)3-s + (0.999 + 0.0289i)4-s − 0.447·5-s + (−0.861 − 0.514i)6-s + (0.373 − 0.215i)7-s + (0.999 + 0.0434i)8-s + (0.00365 + 0.00633i)9-s + (−0.447 − 0.00648i)10-s + (0.301 − 0.522i)11-s + (−0.854 − 0.526i)12-s + (0.133 − 0.990i)13-s + (0.376 − 0.210i)14-s + (0.388 + 0.224i)15-s + (0.998 + 0.0579i)16-s + (0.363 + 0.630i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 520 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.351 + 0.936i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 520 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.351 + 0.936i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.59259 - 1.10381i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.59259 - 1.10381i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-1.41 - 0.0204i)T \) |
| 5 | \( 1 + T \) |
| 13 | \( 1 + (-0.482 + 3.57i)T \) |
good | 3 | \( 1 + (1.50 + 0.869i)T + (1.5 + 2.59i)T^{2} \) |
| 7 | \( 1 + (-0.987 + 0.570i)T + (3.5 - 6.06i)T^{2} \) |
| 11 | \( 1 + (-1.00 + 1.73i)T + (-5.5 - 9.52i)T^{2} \) |
| 17 | \( 1 + (-1.50 - 2.59i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (2.66 + 4.62i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (-1.81 + 3.13i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (-2.44 - 1.41i)T + (14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + 7.94iT - 31T^{2} \) |
| 37 | \( 1 + (4.33 - 7.51i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + (-0.975 - 0.563i)T + (20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (-2.66 + 1.53i)T + (21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + 2.99iT - 47T^{2} \) |
| 53 | \( 1 - 6.13iT - 53T^{2} \) |
| 59 | \( 1 + (-1.62 - 2.80i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (1.54 - 0.892i)T + (30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (7.15 - 12.4i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + (-4.89 + 2.82i)T + (35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 - 15.8iT - 73T^{2} \) |
| 79 | \( 1 - 5.25T + 79T^{2} \) |
| 83 | \( 1 - 12.2T + 83T^{2} \) |
| 89 | \( 1 + (1.76 + 1.01i)T + (44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (0.354 - 0.204i)T + (48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.05278801846486837064384362293, −10.35146880405272444997197990605, −8.667598486195741759984972140689, −7.72708446560210740161771342888, −6.74732483164879632513670134760, −6.03665972830782231904516145036, −5.13458256638385869095384000735, −4.06170087812801651323987718697, −2.85856393840169570163738218745, −0.997444900436647094914910921975,
1.88850916033401435460695271758, 3.55106948883912533457875332637, 4.56100399679729024287730065246, 5.20547534146198696864356104170, 6.22710314253869711528069030697, 7.13776284564182424171928469434, 8.171387779773613522349872629257, 9.501178339743183115536191514299, 10.61178295639725319990275438190, 11.13806426092183192811025495136