Properties

Label 2-513-1.1-c1-0-10
Degree $2$
Conductor $513$
Sign $1$
Analytic cond. $4.09632$
Root an. cond. $2.02393$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.50·2-s + 0.267·4-s + 4.11·5-s + 1.26·7-s − 2.60·8-s + 6.19·10-s + 2.60·11-s − 3.46·13-s + 1.90·14-s − 4.46·16-s − 19-s + 1.10·20-s + 3.92·22-s − 1.10·23-s + 11.9·25-s − 5.21·26-s + 0.339·28-s − 8.63·29-s + 10.6·31-s − 1.50·32-s + 5.21·35-s + 4.19·37-s − 1.50·38-s − 10.7·40-s − 3.71·41-s − 2.73·43-s + 0.698·44-s + ⋯
L(s)  = 1  + 1.06·2-s + 0.133·4-s + 1.84·5-s + 0.479·7-s − 0.922·8-s + 1.95·10-s + 0.786·11-s − 0.960·13-s + 0.510·14-s − 1.11·16-s − 0.229·19-s + 0.246·20-s + 0.837·22-s − 0.229·23-s + 2.38·25-s − 1.02·26-s + 0.0642·28-s − 1.60·29-s + 1.91·31-s − 0.266·32-s + 0.881·35-s + 0.689·37-s − 0.244·38-s − 1.69·40-s − 0.579·41-s − 0.416·43-s + 0.105·44-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 513 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 513 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(513\)    =    \(3^{3} \cdot 19\)
Sign: $1$
Analytic conductor: \(4.09632\)
Root analytic conductor: \(2.02393\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 513,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.901981088\)
\(L(\frac12)\) \(\approx\) \(2.901981088\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
19 \( 1 + T \)
good2 \( 1 - 1.50T + 2T^{2} \)
5 \( 1 - 4.11T + 5T^{2} \)
7 \( 1 - 1.26T + 7T^{2} \)
11 \( 1 - 2.60T + 11T^{2} \)
13 \( 1 + 3.46T + 13T^{2} \)
17 \( 1 + 17T^{2} \)
23 \( 1 + 1.10T + 23T^{2} \)
29 \( 1 + 8.63T + 29T^{2} \)
31 \( 1 - 10.6T + 31T^{2} \)
37 \( 1 - 4.19T + 37T^{2} \)
41 \( 1 + 3.71T + 41T^{2} \)
43 \( 1 + 2.73T + 43T^{2} \)
47 \( 1 + 4.51T + 47T^{2} \)
53 \( 1 + 4.51T + 53T^{2} \)
59 \( 1 + 7.12T + 59T^{2} \)
61 \( 1 + 7.19T + 61T^{2} \)
67 \( 1 + 5.73T + 67T^{2} \)
71 \( 1 - 14.2T + 71T^{2} \)
73 \( 1 - 16.1T + 73T^{2} \)
79 \( 1 + 9T + 79T^{2} \)
83 \( 1 + 7.52T + 83T^{2} \)
89 \( 1 + 16.0T + 89T^{2} \)
97 \( 1 + 7.66T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.01423526293359160836111144970, −9.703378047061319108982288685914, −9.509909474097867304340314943611, −8.311545318791799061823375592705, −6.75794540506589780098121444650, −6.05892329293598539375529207567, −5.21022895178882818642038729400, −4.44254791916248472279817020057, −2.93250915065198606474738399801, −1.79249472125450849546359112909, 1.79249472125450849546359112909, 2.93250915065198606474738399801, 4.44254791916248472279817020057, 5.21022895178882818642038729400, 6.05892329293598539375529207567, 6.75794540506589780098121444650, 8.311545318791799061823375592705, 9.509909474097867304340314943611, 9.703378047061319108982288685914, 11.01423526293359160836111144970

Graph of the $Z$-function along the critical line