L(s) = 1 | − 2.63i·2-s + (−0.707 + 0.707i)3-s − 4.95·4-s + (1.57 − 1.57i)5-s + (1.86 + 1.86i)6-s + (1.63 + 1.63i)7-s + 7.77i·8-s − 1.00i·9-s + (−4.14 − 4.14i)10-s + (1.37 + 1.37i)11-s + (3.50 − 3.50i)12-s − 1.32·13-s + (4.31 − 4.31i)14-s + 2.22i·15-s + 10.6·16-s + (−3.88 − 1.37i)17-s + ⋯ |
L(s) = 1 | − 1.86i·2-s + (−0.408 + 0.408i)3-s − 2.47·4-s + (0.702 − 0.702i)5-s + (0.761 + 0.761i)6-s + (0.618 + 0.618i)7-s + 2.75i·8-s − 0.333i·9-s + (−1.31 − 1.31i)10-s + (0.415 + 0.415i)11-s + (1.01 − 1.01i)12-s − 0.366·13-s + (1.15 − 1.15i)14-s + 0.573i·15-s + 2.65·16-s + (−0.942 − 0.334i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 51 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.447 + 0.894i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 51 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.447 + 0.894i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.391830 - 0.633959i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.391830 - 0.633959i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (0.707 - 0.707i)T \) |
| 17 | \( 1 + (3.88 + 1.37i)T \) |
good | 2 | \( 1 + 2.63iT - 2T^{2} \) |
| 5 | \( 1 + (-1.57 + 1.57i)T - 5iT^{2} \) |
| 7 | \( 1 + (-1.63 - 1.63i)T + 7iT^{2} \) |
| 11 | \( 1 + (-1.37 - 1.37i)T + 11iT^{2} \) |
| 13 | \( 1 + 1.32T + 13T^{2} \) |
| 19 | \( 1 - 5.95iT - 19T^{2} \) |
| 23 | \( 1 + (3.37 + 3.37i)T + 23iT^{2} \) |
| 29 | \( 1 + (0.122 - 0.122i)T - 29iT^{2} \) |
| 31 | \( 1 + (-0.314 + 0.314i)T - 31iT^{2} \) |
| 37 | \( 1 + (-3.75 + 3.75i)T - 37iT^{2} \) |
| 41 | \( 1 + (2.84 + 2.84i)T + 41iT^{2} \) |
| 43 | \( 1 + 8.33iT - 43T^{2} \) |
| 47 | \( 1 + 2.38T + 47T^{2} \) |
| 53 | \( 1 + 0.727iT - 53T^{2} \) |
| 59 | \( 1 - 11.7iT - 59T^{2} \) |
| 61 | \( 1 + (-6.14 - 6.14i)T + 61iT^{2} \) |
| 67 | \( 1 + 14.1T + 67T^{2} \) |
| 71 | \( 1 + (-4.31 + 4.31i)T - 71iT^{2} \) |
| 73 | \( 1 + (-7.46 + 7.46i)T - 73iT^{2} \) |
| 79 | \( 1 + (-0.493 - 0.493i)T + 79iT^{2} \) |
| 83 | \( 1 - 8.52iT - 83T^{2} \) |
| 89 | \( 1 + 5.40T + 89T^{2} \) |
| 97 | \( 1 + (-3.33 + 3.33i)T - 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−14.80507586071677193458404172844, −13.62950785091286031428341907347, −12.41716701890655270334470928698, −11.80901226468877396334934198709, −10.54235309855242013906812918324, −9.554823557058639491988905506893, −8.643315163566147680173303399821, −5.46466237600052477189876580057, −4.27051790441278271932000630544, −1.98266399988151318784730276970,
4.68837996991755866303255918275, 6.17155260356155897279096232802, 6.95911035252782178753972823013, 8.168609419303141741300458952264, 9.633036731700231880081823163898, 11.16993505034409403267290017924, 13.20745332331958750012771394407, 13.92709930258729998113744150401, 14.77440730662223007601072534291, 15.92186119347685637198163732574