Properties

Label 2-5096-1.1-c1-0-26
Degree $2$
Conductor $5096$
Sign $1$
Analytic cond. $40.6917$
Root an. cond. $6.37900$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.33·3-s − 1.42·5-s − 1.22·9-s − 6.47·11-s + 13-s − 1.89·15-s + 5.48·17-s + 2.96·19-s + 4.94·23-s − 2.97·25-s − 5.63·27-s − 3.73·29-s + 3.98·31-s − 8.63·33-s − 6.58·37-s + 1.33·39-s + 10.3·41-s + 10.8·43-s + 1.73·45-s − 10.9·47-s + 7.32·51-s + 5.45·53-s + 9.20·55-s + 3.95·57-s − 2.14·59-s − 2.09·61-s − 1.42·65-s + ⋯
L(s)  = 1  + 0.770·3-s − 0.635·5-s − 0.406·9-s − 1.95·11-s + 0.277·13-s − 0.489·15-s + 1.33·17-s + 0.679·19-s + 1.03·23-s − 0.595·25-s − 1.08·27-s − 0.692·29-s + 0.716·31-s − 1.50·33-s − 1.08·37-s + 0.213·39-s + 1.60·41-s + 1.65·43-s + 0.258·45-s − 1.60·47-s + 1.02·51-s + 0.748·53-s + 1.24·55-s + 0.523·57-s − 0.279·59-s − 0.268·61-s − 0.176·65-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 5096 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5096 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(5096\)    =    \(2^{3} \cdot 7^{2} \cdot 13\)
Sign: $1$
Analytic conductor: \(40.6917\)
Root analytic conductor: \(6.37900\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 5096,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.738901343\)
\(L(\frac12)\) \(\approx\) \(1.738901343\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
7 \( 1 \)
13 \( 1 - T \)
good3 \( 1 - 1.33T + 3T^{2} \)
5 \( 1 + 1.42T + 5T^{2} \)
11 \( 1 + 6.47T + 11T^{2} \)
17 \( 1 - 5.48T + 17T^{2} \)
19 \( 1 - 2.96T + 19T^{2} \)
23 \( 1 - 4.94T + 23T^{2} \)
29 \( 1 + 3.73T + 29T^{2} \)
31 \( 1 - 3.98T + 31T^{2} \)
37 \( 1 + 6.58T + 37T^{2} \)
41 \( 1 - 10.3T + 41T^{2} \)
43 \( 1 - 10.8T + 43T^{2} \)
47 \( 1 + 10.9T + 47T^{2} \)
53 \( 1 - 5.45T + 53T^{2} \)
59 \( 1 + 2.14T + 59T^{2} \)
61 \( 1 + 2.09T + 61T^{2} \)
67 \( 1 - 4.94T + 67T^{2} \)
71 \( 1 - 15.3T + 71T^{2} \)
73 \( 1 + 10.6T + 73T^{2} \)
79 \( 1 + 0.0739T + 79T^{2} \)
83 \( 1 + 11.4T + 83T^{2} \)
89 \( 1 - 5.97T + 89T^{2} \)
97 \( 1 - 1.49T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.015449741046444510575584668113, −7.75881957961168962682080460783, −7.15826080217399309858253144787, −5.77549067561823661836141890005, −5.45019681833721030992469661159, −4.49192301426049542498061386282, −3.38559144582519678830005074852, −3.04484189629740998357034576930, −2.13746439844456464402182720315, −0.66710345884556255447653455318, 0.66710345884556255447653455318, 2.13746439844456464402182720315, 3.04484189629740998357034576930, 3.38559144582519678830005074852, 4.49192301426049542498061386282, 5.45019681833721030992469661159, 5.77549067561823661836141890005, 7.15826080217399309858253144787, 7.75881957961168962682080460783, 8.015449741046444510575584668113

Graph of the $Z$-function along the critical line