Properties

Label 5096.2.a.ba.1.5
Level $5096$
Weight $2$
Character 5096.1
Self dual yes
Analytic conductor $40.692$
Analytic rank $0$
Dimension $7$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [5096,2,Mod(1,5096)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(5096, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("5096.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 5096 = 2^{3} \cdot 7^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5096.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [7,0,2,0,-2,0,0,0,7,0,8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(40.6917648700\)
Analytic rank: \(0\)
Dimension: \(7\)
Coefficient field: \(\mathbb{Q}[x]/(x^{7} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{7} - 2x^{6} - 12x^{5} + 19x^{4} + 33x^{3} - 27x^{2} - 24x - 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 728)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.5
Root \(1.33404\) of defining polynomial
Character \(\chi\) \(=\) 5096.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.33404 q^{3} -1.42174 q^{5} -1.22033 q^{9} -6.47531 q^{11} +1.00000 q^{13} -1.89666 q^{15} +5.48747 q^{17} +2.96375 q^{19} +4.94091 q^{23} -2.97867 q^{25} -5.63010 q^{27} -3.73126 q^{29} +3.98803 q^{31} -8.63834 q^{33} -6.58298 q^{37} +1.33404 q^{39} +10.3060 q^{41} +10.8671 q^{43} +1.73499 q^{45} -10.9919 q^{47} +7.32052 q^{51} +5.45146 q^{53} +9.20618 q^{55} +3.95377 q^{57} -2.14499 q^{59} -2.09880 q^{61} -1.42174 q^{65} +4.94029 q^{67} +6.59139 q^{69} +15.3285 q^{71} -10.6591 q^{73} -3.97367 q^{75} -0.0739765 q^{79} -3.84981 q^{81} -11.4156 q^{83} -7.80174 q^{85} -4.97766 q^{87} +5.97451 q^{89} +5.32021 q^{93} -4.21367 q^{95} +1.49593 q^{97} +7.90202 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 7 q + 2 q^{3} - 2 q^{5} + 7 q^{9} + 8 q^{11} + 7 q^{13} + 13 q^{15} + 8 q^{17} - 2 q^{19} + 16 q^{23} + 17 q^{25} + 11 q^{27} + 4 q^{29} + q^{31} - 14 q^{33} - 4 q^{37} + 2 q^{39} - 4 q^{41} + 8 q^{43}+ \cdots + 48 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.33404 0.770210 0.385105 0.922873i \(-0.374165\pi\)
0.385105 + 0.922873i \(0.374165\pi\)
\(4\) 0 0
\(5\) −1.42174 −0.635820 −0.317910 0.948121i \(-0.602981\pi\)
−0.317910 + 0.948121i \(0.602981\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) −1.22033 −0.406777
\(10\) 0 0
\(11\) −6.47531 −1.95238 −0.976190 0.216918i \(-0.930400\pi\)
−0.976190 + 0.216918i \(0.930400\pi\)
\(12\) 0 0
\(13\) 1.00000 0.277350
\(14\) 0 0
\(15\) −1.89666 −0.489715
\(16\) 0 0
\(17\) 5.48747 1.33091 0.665454 0.746439i \(-0.268238\pi\)
0.665454 + 0.746439i \(0.268238\pi\)
\(18\) 0 0
\(19\) 2.96375 0.679932 0.339966 0.940438i \(-0.389584\pi\)
0.339966 + 0.940438i \(0.389584\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 4.94091 1.03025 0.515126 0.857115i \(-0.327745\pi\)
0.515126 + 0.857115i \(0.327745\pi\)
\(24\) 0 0
\(25\) −2.97867 −0.595733
\(26\) 0 0
\(27\) −5.63010 −1.08351
\(28\) 0 0
\(29\) −3.73126 −0.692878 −0.346439 0.938072i \(-0.612609\pi\)
−0.346439 + 0.938072i \(0.612609\pi\)
\(30\) 0 0
\(31\) 3.98803 0.716272 0.358136 0.933669i \(-0.383412\pi\)
0.358136 + 0.933669i \(0.383412\pi\)
\(32\) 0 0
\(33\) −8.63834 −1.50374
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −6.58298 −1.08223 −0.541117 0.840947i \(-0.681999\pi\)
−0.541117 + 0.840947i \(0.681999\pi\)
\(38\) 0 0
\(39\) 1.33404 0.213618
\(40\) 0 0
\(41\) 10.3060 1.60953 0.804763 0.593596i \(-0.202292\pi\)
0.804763 + 0.593596i \(0.202292\pi\)
\(42\) 0 0
\(43\) 10.8671 1.65721 0.828607 0.559830i \(-0.189134\pi\)
0.828607 + 0.559830i \(0.189134\pi\)
\(44\) 0 0
\(45\) 1.73499 0.258637
\(46\) 0 0
\(47\) −10.9919 −1.60334 −0.801669 0.597769i \(-0.796054\pi\)
−0.801669 + 0.597769i \(0.796054\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) 7.32052 1.02508
\(52\) 0 0
\(53\) 5.45146 0.748815 0.374408 0.927264i \(-0.377846\pi\)
0.374408 + 0.927264i \(0.377846\pi\)
\(54\) 0 0
\(55\) 9.20618 1.24136
\(56\) 0 0
\(57\) 3.95377 0.523690
\(58\) 0 0
\(59\) −2.14499 −0.279254 −0.139627 0.990204i \(-0.544590\pi\)
−0.139627 + 0.990204i \(0.544590\pi\)
\(60\) 0 0
\(61\) −2.09880 −0.268724 −0.134362 0.990932i \(-0.542899\pi\)
−0.134362 + 0.990932i \(0.542899\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −1.42174 −0.176345
\(66\) 0 0
\(67\) 4.94029 0.603553 0.301776 0.953379i \(-0.402420\pi\)
0.301776 + 0.953379i \(0.402420\pi\)
\(68\) 0 0
\(69\) 6.59139 0.793510
\(70\) 0 0
\(71\) 15.3285 1.81916 0.909581 0.415527i \(-0.136403\pi\)
0.909581 + 0.415527i \(0.136403\pi\)
\(72\) 0 0
\(73\) −10.6591 −1.24755 −0.623776 0.781603i \(-0.714402\pi\)
−0.623776 + 0.781603i \(0.714402\pi\)
\(74\) 0 0
\(75\) −3.97367 −0.458840
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −0.0739765 −0.00832301 −0.00416151 0.999991i \(-0.501325\pi\)
−0.00416151 + 0.999991i \(0.501325\pi\)
\(80\) 0 0
\(81\) −3.84981 −0.427756
\(82\) 0 0
\(83\) −11.4156 −1.25303 −0.626513 0.779411i \(-0.715518\pi\)
−0.626513 + 0.779411i \(0.715518\pi\)
\(84\) 0 0
\(85\) −7.80174 −0.846217
\(86\) 0 0
\(87\) −4.97766 −0.533662
\(88\) 0 0
\(89\) 5.97451 0.633297 0.316649 0.948543i \(-0.397442\pi\)
0.316649 + 0.948543i \(0.397442\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 5.32021 0.551680
\(94\) 0 0
\(95\) −4.21367 −0.432314
\(96\) 0 0
\(97\) 1.49593 0.151889 0.0759445 0.997112i \(-0.475803\pi\)
0.0759445 + 0.997112i \(0.475803\pi\)
\(98\) 0 0
\(99\) 7.90202 0.794182
\(100\) 0 0
\(101\) 4.41174 0.438985 0.219492 0.975614i \(-0.429560\pi\)
0.219492 + 0.975614i \(0.429560\pi\)
\(102\) 0 0
\(103\) 10.5788 1.04236 0.521181 0.853446i \(-0.325492\pi\)
0.521181 + 0.853446i \(0.325492\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −4.55588 −0.440433 −0.220217 0.975451i \(-0.570676\pi\)
−0.220217 + 0.975451i \(0.570676\pi\)
\(108\) 0 0
\(109\) 7.54809 0.722976 0.361488 0.932377i \(-0.382269\pi\)
0.361488 + 0.932377i \(0.382269\pi\)
\(110\) 0 0
\(111\) −8.78197 −0.833548
\(112\) 0 0
\(113\) 7.02619 0.660969 0.330484 0.943811i \(-0.392788\pi\)
0.330484 + 0.943811i \(0.392788\pi\)
\(114\) 0 0
\(115\) −7.02467 −0.655054
\(116\) 0 0
\(117\) −1.22033 −0.112820
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 30.9297 2.81179
\(122\) 0 0
\(123\) 13.7486 1.23967
\(124\) 0 0
\(125\) 11.3436 1.01460
\(126\) 0 0
\(127\) 16.5956 1.47262 0.736310 0.676644i \(-0.236566\pi\)
0.736310 + 0.676644i \(0.236566\pi\)
\(128\) 0 0
\(129\) 14.4972 1.27640
\(130\) 0 0
\(131\) 3.42439 0.299190 0.149595 0.988747i \(-0.452203\pi\)
0.149595 + 0.988747i \(0.452203\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 8.00452 0.688919
\(136\) 0 0
\(137\) 14.1334 1.20750 0.603750 0.797174i \(-0.293673\pi\)
0.603750 + 0.797174i \(0.293673\pi\)
\(138\) 0 0
\(139\) 18.2304 1.54628 0.773142 0.634232i \(-0.218684\pi\)
0.773142 + 0.634232i \(0.218684\pi\)
\(140\) 0 0
\(141\) −14.6637 −1.23491
\(142\) 0 0
\(143\) −6.47531 −0.541493
\(144\) 0 0
\(145\) 5.30487 0.440546
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −13.1853 −1.08018 −0.540090 0.841607i \(-0.681610\pi\)
−0.540090 + 0.841607i \(0.681610\pi\)
\(150\) 0 0
\(151\) 10.1575 0.826609 0.413305 0.910593i \(-0.364374\pi\)
0.413305 + 0.910593i \(0.364374\pi\)
\(152\) 0 0
\(153\) −6.69652 −0.541382
\(154\) 0 0
\(155\) −5.66993 −0.455420
\(156\) 0 0
\(157\) 8.09097 0.645729 0.322865 0.946445i \(-0.395354\pi\)
0.322865 + 0.946445i \(0.395354\pi\)
\(158\) 0 0
\(159\) 7.27248 0.576745
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) −4.36497 −0.341891 −0.170945 0.985280i \(-0.554682\pi\)
−0.170945 + 0.985280i \(0.554682\pi\)
\(164\) 0 0
\(165\) 12.2814 0.956109
\(166\) 0 0
\(167\) 25.2156 1.95124 0.975620 0.219465i \(-0.0704312\pi\)
0.975620 + 0.219465i \(0.0704312\pi\)
\(168\) 0 0
\(169\) 1.00000 0.0769231
\(170\) 0 0
\(171\) −3.61676 −0.276580
\(172\) 0 0
\(173\) 12.5896 0.957167 0.478583 0.878042i \(-0.341150\pi\)
0.478583 + 0.878042i \(0.341150\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −2.86151 −0.215084
\(178\) 0 0
\(179\) −13.1806 −0.985167 −0.492583 0.870265i \(-0.663947\pi\)
−0.492583 + 0.870265i \(0.663947\pi\)
\(180\) 0 0
\(181\) 7.44951 0.553718 0.276859 0.960911i \(-0.410707\pi\)
0.276859 + 0.960911i \(0.410707\pi\)
\(182\) 0 0
\(183\) −2.79989 −0.206974
\(184\) 0 0
\(185\) 9.35926 0.688106
\(186\) 0 0
\(187\) −35.5331 −2.59844
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −7.52867 −0.544755 −0.272378 0.962190i \(-0.587810\pi\)
−0.272378 + 0.962190i \(0.587810\pi\)
\(192\) 0 0
\(193\) 25.5924 1.84218 0.921092 0.389345i \(-0.127299\pi\)
0.921092 + 0.389345i \(0.127299\pi\)
\(194\) 0 0
\(195\) −1.89666 −0.135822
\(196\) 0 0
\(197\) 12.4346 0.885929 0.442964 0.896539i \(-0.353927\pi\)
0.442964 + 0.896539i \(0.353927\pi\)
\(198\) 0 0
\(199\) −2.23636 −0.158531 −0.0792656 0.996854i \(-0.525258\pi\)
−0.0792656 + 0.996854i \(0.525258\pi\)
\(200\) 0 0
\(201\) 6.59056 0.464862
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) −14.6524 −1.02337
\(206\) 0 0
\(207\) −6.02954 −0.419082
\(208\) 0 0
\(209\) −19.1912 −1.32748
\(210\) 0 0
\(211\) 9.82507 0.676386 0.338193 0.941077i \(-0.390184\pi\)
0.338193 + 0.941077i \(0.390184\pi\)
\(212\) 0 0
\(213\) 20.4489 1.40114
\(214\) 0 0
\(215\) −15.4501 −1.05369
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) −14.2197 −0.960876
\(220\) 0 0
\(221\) 5.48747 0.369127
\(222\) 0 0
\(223\) 14.6646 0.982012 0.491006 0.871156i \(-0.336629\pi\)
0.491006 + 0.871156i \(0.336629\pi\)
\(224\) 0 0
\(225\) 3.63496 0.242330
\(226\) 0 0
\(227\) −12.9287 −0.858109 −0.429055 0.903279i \(-0.641153\pi\)
−0.429055 + 0.903279i \(0.641153\pi\)
\(228\) 0 0
\(229\) −0.212322 −0.0140306 −0.00701531 0.999975i \(-0.502233\pi\)
−0.00701531 + 0.999975i \(0.502233\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −17.6453 −1.15598 −0.577990 0.816044i \(-0.696163\pi\)
−0.577990 + 0.816044i \(0.696163\pi\)
\(234\) 0 0
\(235\) 15.6276 1.01943
\(236\) 0 0
\(237\) −0.0986879 −0.00641047
\(238\) 0 0
\(239\) −27.0954 −1.75266 −0.876329 0.481713i \(-0.840015\pi\)
−0.876329 + 0.481713i \(0.840015\pi\)
\(240\) 0 0
\(241\) 0.141723 0.00912918 0.00456459 0.999990i \(-0.498547\pi\)
0.00456459 + 0.999990i \(0.498547\pi\)
\(242\) 0 0
\(243\) 11.7545 0.754051
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 2.96375 0.188579
\(248\) 0 0
\(249\) −15.2289 −0.965092
\(250\) 0 0
\(251\) 9.20022 0.580712 0.290356 0.956919i \(-0.406226\pi\)
0.290356 + 0.956919i \(0.406226\pi\)
\(252\) 0 0
\(253\) −31.9939 −2.01144
\(254\) 0 0
\(255\) −10.4079 −0.651765
\(256\) 0 0
\(257\) −27.9399 −1.74284 −0.871420 0.490537i \(-0.836800\pi\)
−0.871420 + 0.490537i \(0.836800\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 4.55337 0.281847
\(262\) 0 0
\(263\) 23.0438 1.42094 0.710471 0.703727i \(-0.248482\pi\)
0.710471 + 0.703727i \(0.248482\pi\)
\(264\) 0 0
\(265\) −7.75054 −0.476112
\(266\) 0 0
\(267\) 7.97026 0.487772
\(268\) 0 0
\(269\) −12.0631 −0.735501 −0.367751 0.929924i \(-0.619872\pi\)
−0.367751 + 0.929924i \(0.619872\pi\)
\(270\) 0 0
\(271\) −17.5000 −1.06305 −0.531526 0.847042i \(-0.678381\pi\)
−0.531526 + 0.847042i \(0.678381\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 19.2878 1.16310
\(276\) 0 0
\(277\) −12.7586 −0.766589 −0.383295 0.923626i \(-0.625211\pi\)
−0.383295 + 0.923626i \(0.625211\pi\)
\(278\) 0 0
\(279\) −4.86672 −0.291363
\(280\) 0 0
\(281\) −21.2289 −1.26641 −0.633205 0.773984i \(-0.718261\pi\)
−0.633205 + 0.773984i \(0.718261\pi\)
\(282\) 0 0
\(283\) 15.2121 0.904264 0.452132 0.891951i \(-0.350664\pi\)
0.452132 + 0.891951i \(0.350664\pi\)
\(284\) 0 0
\(285\) −5.62122 −0.332972
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 13.1123 0.771314
\(290\) 0 0
\(291\) 1.99564 0.116986
\(292\) 0 0
\(293\) −24.3078 −1.42008 −0.710040 0.704162i \(-0.751323\pi\)
−0.710040 + 0.704162i \(0.751323\pi\)
\(294\) 0 0
\(295\) 3.04961 0.177555
\(296\) 0 0
\(297\) 36.4567 2.11543
\(298\) 0 0
\(299\) 4.94091 0.285740
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 5.88545 0.338111
\(304\) 0 0
\(305\) 2.98395 0.170860
\(306\) 0 0
\(307\) −28.1957 −1.60922 −0.804608 0.593806i \(-0.797625\pi\)
−0.804608 + 0.593806i \(0.797625\pi\)
\(308\) 0 0
\(309\) 14.1126 0.802838
\(310\) 0 0
\(311\) 1.94825 0.110475 0.0552374 0.998473i \(-0.482408\pi\)
0.0552374 + 0.998473i \(0.482408\pi\)
\(312\) 0 0
\(313\) −23.9236 −1.35224 −0.676120 0.736791i \(-0.736340\pi\)
−0.676120 + 0.736791i \(0.736340\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −6.71089 −0.376921 −0.188461 0.982081i \(-0.560350\pi\)
−0.188461 + 0.982081i \(0.560350\pi\)
\(318\) 0 0
\(319\) 24.1611 1.35276
\(320\) 0 0
\(321\) −6.07773 −0.339226
\(322\) 0 0
\(323\) 16.2635 0.904926
\(324\) 0 0
\(325\) −2.97867 −0.165227
\(326\) 0 0
\(327\) 10.0695 0.556843
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 16.5268 0.908393 0.454196 0.890902i \(-0.349926\pi\)
0.454196 + 0.890902i \(0.349926\pi\)
\(332\) 0 0
\(333\) 8.03340 0.440228
\(334\) 0 0
\(335\) −7.02379 −0.383751
\(336\) 0 0
\(337\) 20.3139 1.10657 0.553283 0.832993i \(-0.313375\pi\)
0.553283 + 0.832993i \(0.313375\pi\)
\(338\) 0 0
\(339\) 9.37324 0.509085
\(340\) 0 0
\(341\) −25.8238 −1.39844
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) −9.37121 −0.504529
\(346\) 0 0
\(347\) 9.90756 0.531866 0.265933 0.963992i \(-0.414320\pi\)
0.265933 + 0.963992i \(0.414320\pi\)
\(348\) 0 0
\(349\) −12.7843 −0.684327 −0.342163 0.939640i \(-0.611160\pi\)
−0.342163 + 0.939640i \(0.611160\pi\)
\(350\) 0 0
\(351\) −5.63010 −0.300513
\(352\) 0 0
\(353\) −8.44261 −0.449355 −0.224677 0.974433i \(-0.572133\pi\)
−0.224677 + 0.974433i \(0.572133\pi\)
\(354\) 0 0
\(355\) −21.7931 −1.15666
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 4.69653 0.247874 0.123937 0.992290i \(-0.460448\pi\)
0.123937 + 0.992290i \(0.460448\pi\)
\(360\) 0 0
\(361\) −10.2162 −0.537693
\(362\) 0 0
\(363\) 41.2615 2.16567
\(364\) 0 0
\(365\) 15.1544 0.793218
\(366\) 0 0
\(367\) 17.9406 0.936490 0.468245 0.883599i \(-0.344886\pi\)
0.468245 + 0.883599i \(0.344886\pi\)
\(368\) 0 0
\(369\) −12.5767 −0.654718
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 13.9156 0.720521 0.360261 0.932852i \(-0.382688\pi\)
0.360261 + 0.932852i \(0.382688\pi\)
\(374\) 0 0
\(375\) 15.1328 0.781454
\(376\) 0 0
\(377\) −3.73126 −0.192170
\(378\) 0 0
\(379\) 2.04903 0.105252 0.0526258 0.998614i \(-0.483241\pi\)
0.0526258 + 0.998614i \(0.483241\pi\)
\(380\) 0 0
\(381\) 22.1392 1.13423
\(382\) 0 0
\(383\) 1.73439 0.0886232 0.0443116 0.999018i \(-0.485891\pi\)
0.0443116 + 0.999018i \(0.485891\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −13.2614 −0.674116
\(388\) 0 0
\(389\) −15.6261 −0.792277 −0.396138 0.918191i \(-0.629650\pi\)
−0.396138 + 0.918191i \(0.629650\pi\)
\(390\) 0 0
\(391\) 27.1131 1.37117
\(392\) 0 0
\(393\) 4.56828 0.230439
\(394\) 0 0
\(395\) 0.105175 0.00529193
\(396\) 0 0
\(397\) 25.8518 1.29747 0.648734 0.761016i \(-0.275299\pi\)
0.648734 + 0.761016i \(0.275299\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −17.5100 −0.874408 −0.437204 0.899362i \(-0.644031\pi\)
−0.437204 + 0.899362i \(0.644031\pi\)
\(402\) 0 0
\(403\) 3.98803 0.198658
\(404\) 0 0
\(405\) 5.47341 0.271976
\(406\) 0 0
\(407\) 42.6268 2.11293
\(408\) 0 0
\(409\) −14.1163 −0.698007 −0.349003 0.937121i \(-0.613480\pi\)
−0.349003 + 0.937121i \(0.613480\pi\)
\(410\) 0 0
\(411\) 18.8546 0.930028
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 16.2300 0.796698
\(416\) 0 0
\(417\) 24.3202 1.19096
\(418\) 0 0
\(419\) −3.82997 −0.187106 −0.0935532 0.995614i \(-0.529823\pi\)
−0.0935532 + 0.995614i \(0.529823\pi\)
\(420\) 0 0
\(421\) −6.50545 −0.317056 −0.158528 0.987354i \(-0.550675\pi\)
−0.158528 + 0.987354i \(0.550675\pi\)
\(422\) 0 0
\(423\) 13.4138 0.652200
\(424\) 0 0
\(425\) −16.3453 −0.792866
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) −8.63834 −0.417063
\(430\) 0 0
\(431\) −11.9134 −0.573846 −0.286923 0.957954i \(-0.592632\pi\)
−0.286923 + 0.957954i \(0.592632\pi\)
\(432\) 0 0
\(433\) −1.73578 −0.0834164 −0.0417082 0.999130i \(-0.513280\pi\)
−0.0417082 + 0.999130i \(0.513280\pi\)
\(434\) 0 0
\(435\) 7.07693 0.339313
\(436\) 0 0
\(437\) 14.6436 0.700500
\(438\) 0 0
\(439\) 7.90495 0.377283 0.188641 0.982046i \(-0.439592\pi\)
0.188641 + 0.982046i \(0.439592\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 30.0346 1.42698 0.713492 0.700663i \(-0.247112\pi\)
0.713492 + 0.700663i \(0.247112\pi\)
\(444\) 0 0
\(445\) −8.49418 −0.402663
\(446\) 0 0
\(447\) −17.5897 −0.831966
\(448\) 0 0
\(449\) −7.38395 −0.348470 −0.174235 0.984704i \(-0.555745\pi\)
−0.174235 + 0.984704i \(0.555745\pi\)
\(450\) 0 0
\(451\) −66.7345 −3.14241
\(452\) 0 0
\(453\) 13.5506 0.636663
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −0.264593 −0.0123771 −0.00618856 0.999981i \(-0.501970\pi\)
−0.00618856 + 0.999981i \(0.501970\pi\)
\(458\) 0 0
\(459\) −30.8950 −1.44206
\(460\) 0 0
\(461\) −0.701091 −0.0326530 −0.0163265 0.999867i \(-0.505197\pi\)
−0.0163265 + 0.999867i \(0.505197\pi\)
\(462\) 0 0
\(463\) 38.5664 1.79233 0.896166 0.443720i \(-0.146341\pi\)
0.896166 + 0.443720i \(0.146341\pi\)
\(464\) 0 0
\(465\) −7.56393 −0.350769
\(466\) 0 0
\(467\) 6.03876 0.279440 0.139720 0.990191i \(-0.455380\pi\)
0.139720 + 0.990191i \(0.455380\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 10.7937 0.497347
\(472\) 0 0
\(473\) −70.3677 −3.23551
\(474\) 0 0
\(475\) −8.82803 −0.405058
\(476\) 0 0
\(477\) −6.65258 −0.304601
\(478\) 0 0
\(479\) −15.1269 −0.691165 −0.345583 0.938388i \(-0.612319\pi\)
−0.345583 + 0.938388i \(0.612319\pi\)
\(480\) 0 0
\(481\) −6.58298 −0.300158
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −2.12682 −0.0965740
\(486\) 0 0
\(487\) 29.6489 1.34352 0.671761 0.740768i \(-0.265538\pi\)
0.671761 + 0.740768i \(0.265538\pi\)
\(488\) 0 0
\(489\) −5.82306 −0.263328
\(490\) 0 0
\(491\) −18.2627 −0.824186 −0.412093 0.911142i \(-0.635202\pi\)
−0.412093 + 0.911142i \(0.635202\pi\)
\(492\) 0 0
\(493\) −20.4752 −0.922157
\(494\) 0 0
\(495\) −11.2346 −0.504957
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) −10.7488 −0.481184 −0.240592 0.970626i \(-0.577342\pi\)
−0.240592 + 0.970626i \(0.577342\pi\)
\(500\) 0 0
\(501\) 33.6387 1.50287
\(502\) 0 0
\(503\) −30.6801 −1.36796 −0.683979 0.729502i \(-0.739752\pi\)
−0.683979 + 0.729502i \(0.739752\pi\)
\(504\) 0 0
\(505\) −6.27233 −0.279115
\(506\) 0 0
\(507\) 1.33404 0.0592469
\(508\) 0 0
\(509\) −17.7092 −0.784948 −0.392474 0.919763i \(-0.628381\pi\)
−0.392474 + 0.919763i \(0.628381\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) −16.6862 −0.736715
\(514\) 0 0
\(515\) −15.0403 −0.662755
\(516\) 0 0
\(517\) 71.1762 3.13032
\(518\) 0 0
\(519\) 16.7950 0.737219
\(520\) 0 0
\(521\) 0.500698 0.0219360 0.0109680 0.999940i \(-0.496509\pi\)
0.0109680 + 0.999940i \(0.496509\pi\)
\(522\) 0 0
\(523\) 6.90377 0.301881 0.150940 0.988543i \(-0.451770\pi\)
0.150940 + 0.988543i \(0.451770\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 21.8842 0.953292
\(528\) 0 0
\(529\) 1.41260 0.0614175
\(530\) 0 0
\(531\) 2.61760 0.113594
\(532\) 0 0
\(533\) 10.3060 0.446402
\(534\) 0 0
\(535\) 6.47725 0.280036
\(536\) 0 0
\(537\) −17.5835 −0.758785
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 14.8371 0.637898 0.318949 0.947772i \(-0.396670\pi\)
0.318949 + 0.947772i \(0.396670\pi\)
\(542\) 0 0
\(543\) 9.93796 0.426479
\(544\) 0 0
\(545\) −10.7314 −0.459682
\(546\) 0 0
\(547\) 4.73378 0.202402 0.101201 0.994866i \(-0.467732\pi\)
0.101201 + 0.994866i \(0.467732\pi\)
\(548\) 0 0
\(549\) 2.56123 0.109311
\(550\) 0 0
\(551\) −11.0585 −0.471110
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 12.4856 0.529986
\(556\) 0 0
\(557\) 12.6064 0.534149 0.267075 0.963676i \(-0.413943\pi\)
0.267075 + 0.963676i \(0.413943\pi\)
\(558\) 0 0
\(559\) 10.8671 0.459629
\(560\) 0 0
\(561\) −47.4027 −2.00134
\(562\) 0 0
\(563\) −9.11831 −0.384291 −0.192145 0.981366i \(-0.561545\pi\)
−0.192145 + 0.981366i \(0.561545\pi\)
\(564\) 0 0
\(565\) −9.98939 −0.420257
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 8.22590 0.344848 0.172424 0.985023i \(-0.444840\pi\)
0.172424 + 0.985023i \(0.444840\pi\)
\(570\) 0 0
\(571\) 29.6725 1.24175 0.620877 0.783908i \(-0.286777\pi\)
0.620877 + 0.783908i \(0.286777\pi\)
\(572\) 0 0
\(573\) −10.0436 −0.419576
\(574\) 0 0
\(575\) −14.7173 −0.613755
\(576\) 0 0
\(577\) 5.61243 0.233648 0.116824 0.993153i \(-0.462729\pi\)
0.116824 + 0.993153i \(0.462729\pi\)
\(578\) 0 0
\(579\) 34.1414 1.41887
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) −35.2999 −1.46197
\(584\) 0 0
\(585\) 1.73499 0.0717329
\(586\) 0 0
\(587\) 7.31862 0.302072 0.151036 0.988528i \(-0.451739\pi\)
0.151036 + 0.988528i \(0.451739\pi\)
\(588\) 0 0
\(589\) 11.8196 0.487016
\(590\) 0 0
\(591\) 16.5883 0.682351
\(592\) 0 0
\(593\) −2.07707 −0.0852949 −0.0426475 0.999090i \(-0.513579\pi\)
−0.0426475 + 0.999090i \(0.513579\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −2.98340 −0.122102
\(598\) 0 0
\(599\) 20.3274 0.830554 0.415277 0.909695i \(-0.363685\pi\)
0.415277 + 0.909695i \(0.363685\pi\)
\(600\) 0 0
\(601\) −21.7340 −0.886549 −0.443275 0.896386i \(-0.646183\pi\)
−0.443275 + 0.896386i \(0.646183\pi\)
\(602\) 0 0
\(603\) −6.02878 −0.245511
\(604\) 0 0
\(605\) −43.9738 −1.78779
\(606\) 0 0
\(607\) 13.0720 0.530576 0.265288 0.964169i \(-0.414533\pi\)
0.265288 + 0.964169i \(0.414533\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −10.9919 −0.444686
\(612\) 0 0
\(613\) −26.6950 −1.07820 −0.539100 0.842242i \(-0.681236\pi\)
−0.539100 + 0.842242i \(0.681236\pi\)
\(614\) 0 0
\(615\) −19.5469 −0.788209
\(616\) 0 0
\(617\) −30.0516 −1.20983 −0.604916 0.796290i \(-0.706793\pi\)
−0.604916 + 0.796290i \(0.706793\pi\)
\(618\) 0 0
\(619\) −7.28177 −0.292679 −0.146339 0.989234i \(-0.546749\pi\)
−0.146339 + 0.989234i \(0.546749\pi\)
\(620\) 0 0
\(621\) −27.8178 −1.11629
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −1.23422 −0.0493686
\(626\) 0 0
\(627\) −25.6019 −1.02244
\(628\) 0 0
\(629\) −36.1239 −1.44035
\(630\) 0 0
\(631\) 7.66163 0.305005 0.152502 0.988303i \(-0.451267\pi\)
0.152502 + 0.988303i \(0.451267\pi\)
\(632\) 0 0
\(633\) 13.1071 0.520959
\(634\) 0 0
\(635\) −23.5946 −0.936321
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) −18.7059 −0.739992
\(640\) 0 0
\(641\) 12.7398 0.503193 0.251597 0.967832i \(-0.419044\pi\)
0.251597 + 0.967832i \(0.419044\pi\)
\(642\) 0 0
\(643\) 2.21508 0.0873542 0.0436771 0.999046i \(-0.486093\pi\)
0.0436771 + 0.999046i \(0.486093\pi\)
\(644\) 0 0
\(645\) −20.6111 −0.811562
\(646\) 0 0
\(647\) 41.5732 1.63441 0.817205 0.576347i \(-0.195522\pi\)
0.817205 + 0.576347i \(0.195522\pi\)
\(648\) 0 0
\(649\) 13.8895 0.545210
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −36.5089 −1.42871 −0.714353 0.699786i \(-0.753279\pi\)
−0.714353 + 0.699786i \(0.753279\pi\)
\(654\) 0 0
\(655\) −4.86857 −0.190231
\(656\) 0 0
\(657\) 13.0076 0.507475
\(658\) 0 0
\(659\) −24.4320 −0.951736 −0.475868 0.879517i \(-0.657866\pi\)
−0.475868 + 0.879517i \(0.657866\pi\)
\(660\) 0 0
\(661\) 0.0150773 0.000586439 0 0.000293219 1.00000i \(-0.499907\pi\)
0.000293219 1.00000i \(0.499907\pi\)
\(662\) 0 0
\(663\) 7.32052 0.284305
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −18.4358 −0.713839
\(668\) 0 0
\(669\) 19.5632 0.756355
\(670\) 0 0
\(671\) 13.5904 0.524652
\(672\) 0 0
\(673\) −22.5358 −0.868691 −0.434346 0.900746i \(-0.643020\pi\)
−0.434346 + 0.900746i \(0.643020\pi\)
\(674\) 0 0
\(675\) 16.7702 0.645485
\(676\) 0 0
\(677\) 46.4701 1.78599 0.892995 0.450067i \(-0.148600\pi\)
0.892995 + 0.450067i \(0.148600\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) −17.2475 −0.660924
\(682\) 0 0
\(683\) −38.2450 −1.46340 −0.731701 0.681625i \(-0.761273\pi\)
−0.731701 + 0.681625i \(0.761273\pi\)
\(684\) 0 0
\(685\) −20.0940 −0.767752
\(686\) 0 0
\(687\) −0.283247 −0.0108065
\(688\) 0 0
\(689\) 5.45146 0.207684
\(690\) 0 0
\(691\) 38.2090 1.45354 0.726770 0.686881i \(-0.241021\pi\)
0.726770 + 0.686881i \(0.241021\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −25.9189 −0.983158
\(696\) 0 0
\(697\) 56.5539 2.14213
\(698\) 0 0
\(699\) −23.5395 −0.890348
\(700\) 0 0
\(701\) 33.3498 1.25960 0.629802 0.776756i \(-0.283136\pi\)
0.629802 + 0.776756i \(0.283136\pi\)
\(702\) 0 0
\(703\) −19.5103 −0.735846
\(704\) 0 0
\(705\) 20.8479 0.785178
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 16.9687 0.637273 0.318637 0.947877i \(-0.396775\pi\)
0.318637 + 0.947877i \(0.396775\pi\)
\(710\) 0 0
\(711\) 0.0902758 0.00338561
\(712\) 0 0
\(713\) 19.7045 0.737940
\(714\) 0 0
\(715\) 9.20618 0.344292
\(716\) 0 0
\(717\) −36.1465 −1.34991
\(718\) 0 0
\(719\) −5.12016 −0.190950 −0.0954749 0.995432i \(-0.530437\pi\)
−0.0954749 + 0.995432i \(0.530437\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 0.189065 0.00703139
\(724\) 0 0
\(725\) 11.1142 0.412771
\(726\) 0 0
\(727\) 12.5823 0.466652 0.233326 0.972399i \(-0.425039\pi\)
0.233326 + 0.972399i \(0.425039\pi\)
\(728\) 0 0
\(729\) 27.2304 1.00853
\(730\) 0 0
\(731\) 59.6328 2.20560
\(732\) 0 0
\(733\) −25.9564 −0.958723 −0.479362 0.877618i \(-0.659132\pi\)
−0.479362 + 0.877618i \(0.659132\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −31.9899 −1.17836
\(738\) 0 0
\(739\) −26.2344 −0.965049 −0.482525 0.875882i \(-0.660280\pi\)
−0.482525 + 0.875882i \(0.660280\pi\)
\(740\) 0 0
\(741\) 3.95377 0.145245
\(742\) 0 0
\(743\) 21.7174 0.796735 0.398368 0.917226i \(-0.369577\pi\)
0.398368 + 0.917226i \(0.369577\pi\)
\(744\) 0 0
\(745\) 18.7460 0.686800
\(746\) 0 0
\(747\) 13.9308 0.509701
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 17.2631 0.629938 0.314969 0.949102i \(-0.398006\pi\)
0.314969 + 0.949102i \(0.398006\pi\)
\(752\) 0 0
\(753\) 12.2735 0.447271
\(754\) 0 0
\(755\) −14.4413 −0.525574
\(756\) 0 0
\(757\) 2.66371 0.0968143 0.0484071 0.998828i \(-0.484586\pi\)
0.0484071 + 0.998828i \(0.484586\pi\)
\(758\) 0 0
\(759\) −42.6813 −1.54923
\(760\) 0 0
\(761\) −46.3411 −1.67986 −0.839932 0.542691i \(-0.817405\pi\)
−0.839932 + 0.542691i \(0.817405\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 9.52069 0.344221
\(766\) 0 0
\(767\) −2.14499 −0.0774512
\(768\) 0 0
\(769\) −39.4181 −1.42145 −0.710727 0.703468i \(-0.751634\pi\)
−0.710727 + 0.703468i \(0.751634\pi\)
\(770\) 0 0
\(771\) −37.2730 −1.34235
\(772\) 0 0
\(773\) 13.1642 0.473483 0.236741 0.971573i \(-0.423921\pi\)
0.236741 + 0.971573i \(0.423921\pi\)
\(774\) 0 0
\(775\) −11.8790 −0.426707
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 30.5444 1.09437
\(780\) 0 0
\(781\) −99.2570 −3.55169
\(782\) 0 0
\(783\) 21.0074 0.750743
\(784\) 0 0
\(785\) −11.5032 −0.410568
\(786\) 0 0
\(787\) −50.4172 −1.79718 −0.898590 0.438790i \(-0.855407\pi\)
−0.898590 + 0.438790i \(0.855407\pi\)
\(788\) 0 0
\(789\) 30.7414 1.09442
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) −2.09880 −0.0745307
\(794\) 0 0
\(795\) −10.3395 −0.366706
\(796\) 0 0
\(797\) 36.0554 1.27715 0.638574 0.769561i \(-0.279525\pi\)
0.638574 + 0.769561i \(0.279525\pi\)
\(798\) 0 0
\(799\) −60.3179 −2.13389
\(800\) 0 0
\(801\) −7.29088 −0.257610
\(802\) 0 0
\(803\) 69.0209 2.43569
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −16.0927 −0.566490
\(808\) 0 0
\(809\) 28.4774 1.00121 0.500606 0.865675i \(-0.333111\pi\)
0.500606 + 0.865675i \(0.333111\pi\)
\(810\) 0 0
\(811\) 10.1443 0.356214 0.178107 0.984011i \(-0.443003\pi\)
0.178107 + 0.984011i \(0.443003\pi\)
\(812\) 0 0
\(813\) −23.3458 −0.818773
\(814\) 0 0
\(815\) 6.20584 0.217381
\(816\) 0 0
\(817\) 32.2073 1.12679
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 23.7524 0.828964 0.414482 0.910058i \(-0.363963\pi\)
0.414482 + 0.910058i \(0.363963\pi\)
\(822\) 0 0
\(823\) 7.50884 0.261742 0.130871 0.991399i \(-0.458223\pi\)
0.130871 + 0.991399i \(0.458223\pi\)
\(824\) 0 0
\(825\) 25.7307 0.895829
\(826\) 0 0
\(827\) 9.15858 0.318475 0.159238 0.987240i \(-0.449096\pi\)
0.159238 + 0.987240i \(0.449096\pi\)
\(828\) 0 0
\(829\) −9.57754 −0.332642 −0.166321 0.986072i \(-0.553189\pi\)
−0.166321 + 0.986072i \(0.553189\pi\)
\(830\) 0 0
\(831\) −17.0205 −0.590435
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) −35.8499 −1.24064
\(836\) 0 0
\(837\) −22.4530 −0.776090
\(838\) 0 0
\(839\) −11.3751 −0.392711 −0.196355 0.980533i \(-0.562911\pi\)
−0.196355 + 0.980533i \(0.562911\pi\)
\(840\) 0 0
\(841\) −15.0777 −0.519920
\(842\) 0 0
\(843\) −28.3203 −0.975402
\(844\) 0 0
\(845\) −1.42174 −0.0489092
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 20.2936 0.696473
\(850\) 0 0
\(851\) −32.5259 −1.11497
\(852\) 0 0
\(853\) 46.5806 1.59489 0.797445 0.603392i \(-0.206185\pi\)
0.797445 + 0.603392i \(0.206185\pi\)
\(854\) 0 0
\(855\) 5.14207 0.175855
\(856\) 0 0
\(857\) −23.2008 −0.792525 −0.396263 0.918137i \(-0.629693\pi\)
−0.396263 + 0.918137i \(0.629693\pi\)
\(858\) 0 0
\(859\) 26.1724 0.892992 0.446496 0.894786i \(-0.352672\pi\)
0.446496 + 0.894786i \(0.352672\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 54.1703 1.84398 0.921989 0.387215i \(-0.126563\pi\)
0.921989 + 0.387215i \(0.126563\pi\)
\(864\) 0 0
\(865\) −17.8990 −0.608585
\(866\) 0 0
\(867\) 17.4924 0.594074
\(868\) 0 0
\(869\) 0.479021 0.0162497
\(870\) 0 0
\(871\) 4.94029 0.167395
\(872\) 0 0
\(873\) −1.82553 −0.0617849
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −26.7496 −0.903269 −0.451635 0.892203i \(-0.649159\pi\)
−0.451635 + 0.892203i \(0.649159\pi\)
\(878\) 0 0
\(879\) −32.4277 −1.09376
\(880\) 0 0
\(881\) 7.20574 0.242767 0.121384 0.992606i \(-0.461267\pi\)
0.121384 + 0.992606i \(0.461267\pi\)
\(882\) 0 0
\(883\) 22.6737 0.763031 0.381515 0.924362i \(-0.375402\pi\)
0.381515 + 0.924362i \(0.375402\pi\)
\(884\) 0 0
\(885\) 4.06831 0.136755
\(886\) 0 0
\(887\) 4.74029 0.159164 0.0795818 0.996828i \(-0.474642\pi\)
0.0795818 + 0.996828i \(0.474642\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 24.9287 0.835143
\(892\) 0 0
\(893\) −32.5774 −1.09016
\(894\) 0 0
\(895\) 18.7394 0.626388
\(896\) 0 0
\(897\) 6.59139 0.220080
\(898\) 0 0
\(899\) −14.8804 −0.496289
\(900\) 0 0
\(901\) 29.9147 0.996604
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −10.5912 −0.352065
\(906\) 0 0
\(907\) −30.8995 −1.02600 −0.513000 0.858388i \(-0.671466\pi\)
−0.513000 + 0.858388i \(0.671466\pi\)
\(908\) 0 0
\(909\) −5.38378 −0.178569
\(910\) 0 0
\(911\) 6.38121 0.211419 0.105710 0.994397i \(-0.466289\pi\)
0.105710 + 0.994397i \(0.466289\pi\)
\(912\) 0 0
\(913\) 73.9196 2.44638
\(914\) 0 0
\(915\) 3.98071 0.131598
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 41.2856 1.36189 0.680943 0.732336i \(-0.261570\pi\)
0.680943 + 0.732336i \(0.261570\pi\)
\(920\) 0 0
\(921\) −37.6143 −1.23943
\(922\) 0 0
\(923\) 15.3285 0.504545
\(924\) 0 0
\(925\) 19.6085 0.644723
\(926\) 0 0
\(927\) −12.9097 −0.424009
\(928\) 0 0
\(929\) 4.28232 0.140499 0.0702493 0.997529i \(-0.477621\pi\)
0.0702493 + 0.997529i \(0.477621\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 2.59904 0.0850888
\(934\) 0 0
\(935\) 50.5187 1.65214
\(936\) 0 0
\(937\) −5.57308 −0.182065 −0.0910324 0.995848i \(-0.529017\pi\)
−0.0910324 + 0.995848i \(0.529017\pi\)
\(938\) 0 0
\(939\) −31.9151 −1.04151
\(940\) 0 0
\(941\) 43.4173 1.41536 0.707681 0.706532i \(-0.249741\pi\)
0.707681 + 0.706532i \(0.249741\pi\)
\(942\) 0 0
\(943\) 50.9210 1.65822
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −27.7856 −0.902912 −0.451456 0.892293i \(-0.649095\pi\)
−0.451456 + 0.892293i \(0.649095\pi\)
\(948\) 0 0
\(949\) −10.6591 −0.346008
\(950\) 0 0
\(951\) −8.95262 −0.290308
\(952\) 0 0
\(953\) −43.3574 −1.40448 −0.702241 0.711939i \(-0.747817\pi\)
−0.702241 + 0.711939i \(0.747817\pi\)
\(954\) 0 0
\(955\) 10.7038 0.346366
\(956\) 0 0
\(957\) 32.2319 1.04191
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −15.0956 −0.486954
\(962\) 0 0
\(963\) 5.55967 0.179158
\(964\) 0 0
\(965\) −36.3857 −1.17130
\(966\) 0 0
\(967\) 40.6261 1.30645 0.653223 0.757165i \(-0.273416\pi\)
0.653223 + 0.757165i \(0.273416\pi\)
\(968\) 0 0
\(969\) 21.6962 0.696983
\(970\) 0 0
\(971\) −18.6733 −0.599256 −0.299628 0.954056i \(-0.596863\pi\)
−0.299628 + 0.954056i \(0.596863\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) −3.97367 −0.127259
\(976\) 0 0
\(977\) 32.5506 1.04139 0.520693 0.853744i \(-0.325674\pi\)
0.520693 + 0.853744i \(0.325674\pi\)
\(978\) 0 0
\(979\) −38.6868 −1.23644
\(980\) 0 0
\(981\) −9.21116 −0.294090
\(982\) 0 0
\(983\) −14.5936 −0.465464 −0.232732 0.972541i \(-0.574767\pi\)
−0.232732 + 0.972541i \(0.574767\pi\)
\(984\) 0 0
\(985\) −17.6787 −0.563291
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 53.6933 1.70735
\(990\) 0 0
\(991\) −16.0304 −0.509222 −0.254611 0.967044i \(-0.581947\pi\)
−0.254611 + 0.967044i \(0.581947\pi\)
\(992\) 0 0
\(993\) 22.0474 0.699653
\(994\) 0 0
\(995\) 3.17951 0.100797
\(996\) 0 0
\(997\) −62.1576 −1.96855 −0.984275 0.176640i \(-0.943477\pi\)
−0.984275 + 0.176640i \(0.943477\pi\)
\(998\) 0 0
\(999\) 37.0628 1.17262
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 5096.2.a.ba.1.5 7
7.3 odd 6 728.2.r.f.625.5 yes 14
7.5 odd 6 728.2.r.f.417.5 14
7.6 odd 2 5096.2.a.z.1.3 7
28.3 even 6 1456.2.r.q.625.3 14
28.19 even 6 1456.2.r.q.417.3 14
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
728.2.r.f.417.5 14 7.5 odd 6
728.2.r.f.625.5 yes 14 7.3 odd 6
1456.2.r.q.417.3 14 28.19 even 6
1456.2.r.q.625.3 14 28.3 even 6
5096.2.a.z.1.3 7 7.6 odd 2
5096.2.a.ba.1.5 7 1.1 even 1 trivial