Properties

Label 2-5096-1.1-c1-0-102
Degree $2$
Conductor $5096$
Sign $-1$
Analytic cond. $40.6917$
Root an. cond. $6.37900$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s − 5-s − 2·9-s + 5·11-s − 13-s − 15-s − 3·17-s + 5·19-s − 3·23-s − 4·25-s − 5·27-s − 6·29-s + 3·31-s + 5·33-s − 3·37-s − 39-s − 6·41-s − 8·43-s + 2·45-s + 9·47-s − 3·51-s − 5·53-s − 5·55-s + 5·57-s − 59-s − 7·61-s + 65-s + ⋯
L(s)  = 1  + 0.577·3-s − 0.447·5-s − 2/3·9-s + 1.50·11-s − 0.277·13-s − 0.258·15-s − 0.727·17-s + 1.14·19-s − 0.625·23-s − 4/5·25-s − 0.962·27-s − 1.11·29-s + 0.538·31-s + 0.870·33-s − 0.493·37-s − 0.160·39-s − 0.937·41-s − 1.21·43-s + 0.298·45-s + 1.31·47-s − 0.420·51-s − 0.686·53-s − 0.674·55-s + 0.662·57-s − 0.130·59-s − 0.896·61-s + 0.124·65-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 5096 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5096 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(5096\)    =    \(2^{3} \cdot 7^{2} \cdot 13\)
Sign: $-1$
Analytic conductor: \(40.6917\)
Root analytic conductor: \(6.37900\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 5096,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
7 \( 1 \)
13 \( 1 + T \)
good3 \( 1 - T + p T^{2} \) 1.3.ab
5 \( 1 + T + p T^{2} \) 1.5.b
11 \( 1 - 5 T + p T^{2} \) 1.11.af
17 \( 1 + 3 T + p T^{2} \) 1.17.d
19 \( 1 - 5 T + p T^{2} \) 1.19.af
23 \( 1 + 3 T + p T^{2} \) 1.23.d
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 - 3 T + p T^{2} \) 1.31.ad
37 \( 1 + 3 T + p T^{2} \) 1.37.d
41 \( 1 + 6 T + p T^{2} \) 1.41.g
43 \( 1 + 8 T + p T^{2} \) 1.43.i
47 \( 1 - 9 T + p T^{2} \) 1.47.aj
53 \( 1 + 5 T + p T^{2} \) 1.53.f
59 \( 1 + T + p T^{2} \) 1.59.b
61 \( 1 + 7 T + p T^{2} \) 1.61.h
67 \( 1 - 13 T + p T^{2} \) 1.67.an
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 + 9 T + p T^{2} \) 1.73.j
79 \( 1 - 5 T + p T^{2} \) 1.79.af
83 \( 1 - 12 T + p T^{2} \) 1.83.am
89 \( 1 - 11 T + p T^{2} \) 1.89.al
97 \( 1 + 10 T + p T^{2} \) 1.97.k
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.963219188678038743652738824172, −7.22406177635590176131606667508, −6.50178937599281148964644286638, −5.74190995609850859791287556193, −4.86374468657976715361791849120, −3.83509225624487105163975937390, −3.50954570647175664462717664438, −2.40786173905135505099356644790, −1.47848823003029190038004519897, 0, 1.47848823003029190038004519897, 2.40786173905135505099356644790, 3.50954570647175664462717664438, 3.83509225624487105163975937390, 4.86374468657976715361791849120, 5.74190995609850859791287556193, 6.50178937599281148964644286638, 7.22406177635590176131606667508, 7.963219188678038743652738824172

Graph of the $Z$-function along the critical line