L(s) = 1 | + 2·2-s + 8·3-s + 4·4-s − 5·5-s + 16·6-s + 8·8-s + 37·9-s − 10·10-s + 12·11-s + 32·12-s + 58·13-s − 40·15-s + 16·16-s − 66·17-s + 74·18-s + 100·19-s − 20·20-s + 24·22-s + 132·23-s + 64·24-s + 25·25-s + 116·26-s + 80·27-s − 90·29-s − 80·30-s − 152·31-s + 32·32-s + ⋯ |
L(s) = 1 | + 0.707·2-s + 1.53·3-s + 1/2·4-s − 0.447·5-s + 1.08·6-s + 0.353·8-s + 1.37·9-s − 0.316·10-s + 0.328·11-s + 0.769·12-s + 1.23·13-s − 0.688·15-s + 1/4·16-s − 0.941·17-s + 0.968·18-s + 1.20·19-s − 0.223·20-s + 0.232·22-s + 1.19·23-s + 0.544·24-s + 1/5·25-s + 0.874·26-s + 0.570·27-s − 0.576·29-s − 0.486·30-s − 0.880·31-s + 0.176·32-s + ⋯ |
Λ(s)=(=(490s/2ΓC(s)L(s)Λ(4−s)
Λ(s)=(=(490s/2ΓC(s+3/2)L(s)Λ(1−s)
Particular Values
L(2) |
≈ |
5.247658093 |
L(21) |
≈ |
5.247658093 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1−pT |
| 5 | 1+pT |
| 7 | 1 |
good | 3 | 1−8T+p3T2 |
| 11 | 1−12T+p3T2 |
| 13 | 1−58T+p3T2 |
| 17 | 1+66T+p3T2 |
| 19 | 1−100T+p3T2 |
| 23 | 1−132T+p3T2 |
| 29 | 1+90T+p3T2 |
| 31 | 1+152T+p3T2 |
| 37 | 1+34T+p3T2 |
| 41 | 1−438T+p3T2 |
| 43 | 1−32T+p3T2 |
| 47 | 1−204T+p3T2 |
| 53 | 1−222T+p3T2 |
| 59 | 1+420T+p3T2 |
| 61 | 1+902T+p3T2 |
| 67 | 1+1024T+p3T2 |
| 71 | 1−432T+p3T2 |
| 73 | 1+362T+p3T2 |
| 79 | 1+160T+p3T2 |
| 83 | 1+72T+p3T2 |
| 89 | 1+810T+p3T2 |
| 97 | 1+1106T+p3T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.73658260281362148619536450940, −9.252623632791610704218499799601, −8.885961350295804892542642103262, −7.74974014986234195049779034566, −7.10609510711787411153545829952, −5.84234121340824604379404952862, −4.42121363232926495205334727802, −3.58659471138166665605015375794, −2.79652536489598075351163586538, −1.41968591770692404719310089490,
1.41968591770692404719310089490, 2.79652536489598075351163586538, 3.58659471138166665605015375794, 4.42121363232926495205334727802, 5.84234121340824604379404952862, 7.10609510711787411153545829952, 7.74974014986234195049779034566, 8.885961350295804892542642103262, 9.252623632791610704218499799601, 10.73658260281362148619536450940