Properties

Label 2-490-1.1-c3-0-24
Degree $2$
Conductor $490$
Sign $1$
Analytic cond. $28.9109$
Root an. cond. $5.37688$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·2-s + 8·3-s + 4·4-s − 5·5-s + 16·6-s + 8·8-s + 37·9-s − 10·10-s + 12·11-s + 32·12-s + 58·13-s − 40·15-s + 16·16-s − 66·17-s + 74·18-s + 100·19-s − 20·20-s + 24·22-s + 132·23-s + 64·24-s + 25·25-s + 116·26-s + 80·27-s − 90·29-s − 80·30-s − 152·31-s + 32·32-s + ⋯
L(s)  = 1  + 0.707·2-s + 1.53·3-s + 1/2·4-s − 0.447·5-s + 1.08·6-s + 0.353·8-s + 1.37·9-s − 0.316·10-s + 0.328·11-s + 0.769·12-s + 1.23·13-s − 0.688·15-s + 1/4·16-s − 0.941·17-s + 0.968·18-s + 1.20·19-s − 0.223·20-s + 0.232·22-s + 1.19·23-s + 0.544·24-s + 1/5·25-s + 0.874·26-s + 0.570·27-s − 0.576·29-s − 0.486·30-s − 0.880·31-s + 0.176·32-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 490 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 490 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(490\)    =    \(2 \cdot 5 \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(28.9109\)
Root analytic conductor: \(5.37688\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 490,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(5.247658093\)
\(L(\frac12)\) \(\approx\) \(5.247658093\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - p T \)
5 \( 1 + p T \)
7 \( 1 \)
good3 \( 1 - 8 T + p^{3} T^{2} \)
11 \( 1 - 12 T + p^{3} T^{2} \)
13 \( 1 - 58 T + p^{3} T^{2} \)
17 \( 1 + 66 T + p^{3} T^{2} \)
19 \( 1 - 100 T + p^{3} T^{2} \)
23 \( 1 - 132 T + p^{3} T^{2} \)
29 \( 1 + 90 T + p^{3} T^{2} \)
31 \( 1 + 152 T + p^{3} T^{2} \)
37 \( 1 + 34 T + p^{3} T^{2} \)
41 \( 1 - 438 T + p^{3} T^{2} \)
43 \( 1 - 32 T + p^{3} T^{2} \)
47 \( 1 - 204 T + p^{3} T^{2} \)
53 \( 1 - 222 T + p^{3} T^{2} \)
59 \( 1 + 420 T + p^{3} T^{2} \)
61 \( 1 + 902 T + p^{3} T^{2} \)
67 \( 1 + 1024 T + p^{3} T^{2} \)
71 \( 1 - 432 T + p^{3} T^{2} \)
73 \( 1 + 362 T + p^{3} T^{2} \)
79 \( 1 + 160 T + p^{3} T^{2} \)
83 \( 1 + 72 T + p^{3} T^{2} \)
89 \( 1 + 810 T + p^{3} T^{2} \)
97 \( 1 + 1106 T + p^{3} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.73658260281362148619536450940, −9.252623632791610704218499799601, −8.885961350295804892542642103262, −7.74974014986234195049779034566, −7.10609510711787411153545829952, −5.84234121340824604379404952862, −4.42121363232926495205334727802, −3.58659471138166665605015375794, −2.79652536489598075351163586538, −1.41968591770692404719310089490, 1.41968591770692404719310089490, 2.79652536489598075351163586538, 3.58659471138166665605015375794, 4.42121363232926495205334727802, 5.84234121340824604379404952862, 7.10609510711787411153545829952, 7.74974014986234195049779034566, 8.885961350295804892542642103262, 9.252623632791610704218499799601, 10.73658260281362148619536450940

Graph of the $Z$-function along the critical line