L(s) = 1 | + (−596. − 418. i)3-s − 2.39e4i·5-s − 3.21e4·7-s + (1.80e5 + 4.99e5i)9-s + 2.66e6i·11-s + 7.50e6·13-s + (−1.00e7 + 1.42e7i)15-s − 1.32e6i·17-s − 3.25e7·19-s + (1.91e7 + 1.34e7i)21-s + 8.48e7i·23-s − 3.27e8·25-s + (1.01e8 − 3.73e8i)27-s + 8.40e8i·29-s + 1.20e9·31-s + ⋯ |
L(s) = 1 | + (−0.818 − 0.574i)3-s − 1.53i·5-s − 0.273·7-s + (0.340 + 0.940i)9-s + 1.50i·11-s + 1.55·13-s + (−0.878 + 1.25i)15-s − 0.0550i·17-s − 0.692·19-s + (0.223 + 0.156i)21-s + 0.573i·23-s − 1.34·25-s + (0.261 − 0.965i)27-s + 1.41i·29-s + 1.35·31-s + ⋯ |
Λ(s)=(=(48s/2ΓC(s)L(s)(0.818+0.574i)Λ(13−s)
Λ(s)=(=(48s/2ΓC(s+6)L(s)(0.818+0.574i)Λ(1−s)
Degree: |
2 |
Conductor: |
48
= 24⋅3
|
Sign: |
0.818+0.574i
|
Analytic conductor: |
43.8717 |
Root analytic conductor: |
6.62357 |
Motivic weight: |
12 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ48(17,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 48, ( :6), 0.818+0.574i)
|
Particular Values
L(213) |
≈ |
1.455542112 |
L(21) |
≈ |
1.455542112 |
L(7) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1+(596.+418.i)T |
good | 5 | 1+2.39e4iT−2.44e8T2 |
| 7 | 1+3.21e4T+1.38e10T2 |
| 11 | 1−2.66e6iT−3.13e12T2 |
| 13 | 1−7.50e6T+2.32e13T2 |
| 17 | 1+1.32e6iT−5.82e14T2 |
| 19 | 1+3.25e7T+2.21e15T2 |
| 23 | 1−8.48e7iT−2.19e16T2 |
| 29 | 1−8.40e8iT−3.53e17T2 |
| 31 | 1−1.20e9T+7.87e17T2 |
| 37 | 1−1.09e9T+6.58e18T2 |
| 41 | 1+5.50e9iT−2.25e19T2 |
| 43 | 1−6.27e9T+3.99e19T2 |
| 47 | 1+4.76e9iT−1.16e20T2 |
| 53 | 1−2.32e10iT−4.91e20T2 |
| 59 | 1+1.03e10iT−1.77e21T2 |
| 61 | 1−4.64e10T+2.65e21T2 |
| 67 | 1+3.54e10T+8.18e21T2 |
| 71 | 1+2.45e11iT−1.64e22T2 |
| 73 | 1−2.38e11T+2.29e22T2 |
| 79 | 1−3.79e10T+5.90e22T2 |
| 83 | 1−2.26e11iT−1.06e23T2 |
| 89 | 1−8.22e11iT−2.46e23T2 |
| 97 | 1−3.60e11T+6.93e23T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.73387777405820445037126362609, −12.12730811011925451016328324434, −10.71591139338993151393666534140, −9.272473240966653346226450619976, −8.063130305240283859193427041712, −6.61955648931601434033083746399, −5.32844297997447631091314304053, −4.26951689546699708629594880087, −1.76241915453433969668043525945, −0.825986681738038834915303966092,
0.67834108436230164139687359244, 2.94051396956640476046244315843, 3.98780048864468071739503091134, 6.07582405843986021826280185439, 6.42738316366795149689091955584, 8.359549683156933934758577715274, 9.988948390442688207965127183514, 10.98428360714476329738660574261, 11.43421665285301068503134129249, 13.25756010686103025362988370222