L(s) = 1 | + 1.59e6·3-s + 4.36e9·5-s − 3.11e11·7-s + 2.54e12·9-s + 6.06e13·11-s + 6.46e14·13-s + 6.96e15·15-s + 2.78e16·17-s + 3.23e17·19-s − 4.96e17·21-s − 2.77e18·23-s + 1.16e19·25-s + 4.05e18·27-s − 4.40e18·29-s − 1.35e20·31-s + 9.66e19·33-s − 1.35e21·35-s + 2.42e21·37-s + 1.03e21·39-s − 1.00e22·41-s − 6.87e21·43-s + 1.11e22·45-s + 7.32e22·47-s + 3.11e22·49-s + 4.44e22·51-s + 2.25e23·53-s + 2.64e23·55-s + ⋯ |
L(s) = 1 | + 0.577·3-s + 1.60·5-s − 1.21·7-s + 0.333·9-s + 0.529·11-s + 0.592·13-s + 0.924·15-s + 0.681·17-s + 1.76·19-s − 0.700·21-s − 1.14·23-s + 1.56·25-s + 0.192·27-s − 0.0797·29-s − 0.995·31-s + 0.305·33-s − 1.94·35-s + 1.63·37-s + 0.341·39-s − 1.70·41-s − 0.610·43-s + 0.533·45-s + 1.95·47-s + 0.473·49-s + 0.393·51-s + 1.18·53-s + 0.847·55-s + ⋯ |
Λ(s)=(=(48s/2ΓC(s)L(s)Λ(28−s)
Λ(s)=(=(48s/2ΓC(s+27/2)L(s)Λ(1−s)
Particular Values
L(14) |
≈ |
4.367831743 |
L(21) |
≈ |
4.367831743 |
L(229) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1−1.59e6T |
good | 5 | 1−4.36e9T+7.45e18T2 |
| 7 | 1+3.11e11T+6.57e22T2 |
| 11 | 1−6.06e13T+1.31e28T2 |
| 13 | 1−6.46e14T+1.19e30T2 |
| 17 | 1−2.78e16T+1.66e33T2 |
| 19 | 1−3.23e17T+3.36e34T2 |
| 23 | 1+2.77e18T+5.84e36T2 |
| 29 | 1+4.40e18T+3.05e39T2 |
| 31 | 1+1.35e20T+1.84e40T2 |
| 37 | 1−2.42e21T+2.19e42T2 |
| 41 | 1+1.00e22T+3.50e43T2 |
| 43 | 1+6.87e21T+1.26e44T2 |
| 47 | 1−7.32e22T+1.40e45T2 |
| 53 | 1−2.25e23T+3.59e46T2 |
| 59 | 1−6.81e22T+6.50e47T2 |
| 61 | 1−2.06e24T+1.59e48T2 |
| 67 | 1+5.18e24T+2.01e49T2 |
| 71 | 1+9.12e24T+9.63e49T2 |
| 73 | 1+6.99e24T+2.04e50T2 |
| 79 | 1+3.46e25T+1.72e51T2 |
| 83 | 1−5.24e25T+6.53e51T2 |
| 89 | 1−2.05e26T+4.30e52T2 |
| 97 | 1−3.43e26T+4.39e53T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.16615095017602300676912623779, −9.690470117714450293190299982649, −8.865676492525466583574453318746, −7.30796439538500621827271816730, −6.18841066958626046258365738347, −5.50476369418244116681712293780, −3.75246637682478132245336427694, −2.88897734265127925217414309474, −1.80636949032861795819643728766, −0.865440736491405725008687668011,
0.865440736491405725008687668011, 1.80636949032861795819643728766, 2.88897734265127925217414309474, 3.75246637682478132245336427694, 5.50476369418244116681712293780, 6.18841066958626046258365738347, 7.30796439538500621827271816730, 8.865676492525466583574453318746, 9.690470117714450293190299982649, 10.16615095017602300676912623779